
Exercises
March 2003
Online Software
Training
Version 1.9

ATLAS DAQ Technical Note 149
http://atddoc.cern.ch/Atlas/Notes/149/Note149-1.html

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical
Publishing System using the User’s Guide template prepared by Mario Ruggier of the
Information and Programming Techniques Group at CERN. Only widely available fonts
have been used, with the principal ones being:

Running text: Palatino 10.5 pt on 13.5 pt line spacing
Chapter numbers and titles: AvantGarde DemiBold 36 and 24 pt
Section headings AvantGarde DemiBold 20 pt
Subsection and subsubsection headings: Helvetica Bold 12 and 10 pt
Captions: Helvetica 9 pt
Listings: Courier Bold 9 pt

Use of any trademark in this document is not intended in any way to infringe on the
rights of the trademark holder.

Copyright CERN, Geneva 1997 - Copyright and any other appropriate legal protection of
this documentation and associated computer program reserved in all countries of the
world.

Organisations collaborating with CERN may receive this program and documentation
freely and without charge.

CERN undertakes no obligation for the maintenance of this program, nor responsibility
for its correctness, and accepts no liability whatsoever resulting from its use.

Program and documentation are provided solely for the use of the organisation to which
they are distributed.

This program may not be copied or otherwise distributed without permission. This
message must be retained on this and any other authorised copies.

The material cannot be sold. CERN should be given credit in all references.

Outline

Chapter 1 Introduction . 7

Chapter 2 Crate Controller . 13

Chapter 3 GUI panel .35

Chapter 4 Diagnostics Test . 43

Chapter 5 On-line Monitoring .49

Chapter 6 Online Histogramming . 57

Chapter 7 Resource Manager. 69

This document has been prepared with Release 5.5 of the Adobe FrameMaker® Technical
Publishing System using the User’s Guide template prepared by Mario Ruggier of the
Information and Programming Techniques Group at CERN. Only widely available fonts
have been used, with the principal ones being:

Running text: Palatino 10.5 pt on 13.5 pt line spacing
Chapter numbers and titles: AvantGarde DemiBold 36 and 24 pt
Section headings AvantGarde DemiBold 20 pt
Subsection and subsubsection headings: Helvetica Bold 12 and 10 pt
Captions: Helvetica 9 pt
Listings: Courier Bold 9 pt

Use of any trademark in this document is not intended in any way to infringe on the
rights of the trademark holder.

Copyright CERN, Geneva 1997 - Copyright and any other appropriate legal protection of
this documentation and associated computer program reserved in all countries of the
world.

Organisations collaborating with CERN may receive this program and documentation
freely and without charge.

CERN undertakes no obligation for the maintenance of this program, nor responsibility
for its correctness, and accepts no liability whatsoever resulting from its use.

Program and documentation are provided solely for the use of the organisation to which
they are distributed.

This program may not be copied or otherwise distributed without permission. This
message must be retained on this and any other authorised copies.

The material cannot be sold. CERN should be given credit in all references.

Chapter 1
Introduction

What is this
document about?

This document presents a series of practical programming exercises intended for
people wanting to develop detector or system specific software using the ATLAS
Online Software as a framework. It does not provide user training on how to run
the ATLAS Trigger-DAQ system.

What is the
Online Software?

The Online Software is responsible for the overall experiment control, including
run control, configuration of the Trigger-DAQ system and management of data
taking partitions. The Online Software also includes the online monitoring
infrastructure and graphical user interfaces used for control and configuration, and
the means for handling distributed information management including database
management and tools. It does not contain any elements that are detector specific as
it is to be used by all possible configurations of the DAQ and detector
instrumentation.

This chapter gives a general overview of the ATLAS Online (formerly known as
DAQ Prototype -1 Back-End) software training exercises.

In these exercises you will be shown how to develop detector or system specific
software using the Online Software as a framework. Four small exercises, described
below, are to be made. In the first exercise, you will develop a read-out crate (ROC)
controller. For the second exercise, you will develop a graphical panel capable of
visualising information provided by the crate controller. In the third one you will
develop a test for the configuration previously built. Afterwards you will develop
an event sampler example and a monitoring task example using the On-Line
Monitoring package. In order to follow these exercises you need to have a basic
knowledge of the following subjects:

• unix environment (Bash shell, X Window System)

• basic object oriented concepts (object, method attribute)

• C++ (basic syntax and constructs)

• programming tools (editor and make)

This tutorial assumes you are going to perform the exercises on a linux or solaris
platform using the bash shell.
Online Software Tutorial 7

Introduction
Crate controller This part of the exercises explains how to develop a simplified ROC crate controller
in C++ based on the Run Control controller skeleton. You will learn how a
controller operates according to the standardized finite-state-machine.

GUI panel This part of the exercises shows you how to develop a simple panel in Java to
visualize and track the value of a parameter of a module in the ROC crate. The
panel will be integrated with the standard Online Integrated GUI.

On-Line
Monitoring

This part of the exercises shows you how to develop an event sampler in C++ and a
monitoring task in java. This is useful to anyone going to implement an event
sampler application that is responsible for supplying events to the event
distribution sub-system or to develop a monitoring task that reads events from the
event distribution.

Online
Histogramming

This part of the exercise explains how to use the Online Histogramming subsystem.
You will learn how to write a histogram provider and a histogram display using
C++.

Test development
and diagnostics

This part of the exercises demonstrates how to write a test for the VME module in a
crate and integrate it so it can be used by the online diagnostics component.

Resource
Manager

This part of the exercises is dedicated to the usage of the Resource Manager,
explaining how to ask for resources, use resources and free them, using the
Resources Manager library.

Installation of
Online SW

release

This document refers to the training prepared for online-00-19-00 release of the
Online Software. To use training, you have to have Online Software release
installed and configured. Release online-00-19-00 is available for the following
platform/compiler combinations:

• Linux RedHat 7.3 / gcc-2.95

• Sun Solaris 2.8 / CC-5.2

• LynxOS 3.0.1 / g++-2.9-98r2

For the use of the Online Software and its training, it is recommended that you use
bash shell. However it is also possible to use the [t]csh. In the following document
it is assumed that the bash shell is used. Start the bash shell.

> bash

Software is available for download from
http://atlas-onlsw.web.cern.ch/Atlas-onlsw/download/download_page.htm.When
using a local installation of the release, source the generated setup.sh script in the
directory where the Online Software has beed installed to set up the environment:

> source ./setup.sh

If you have access to afs, you can use public installation of the release from
/afs/cern.ch/atlas/project/tdaq/cmt. To set up the release, you have to source the
official setup script having as agrument the release name. For example, to setup
release online-00-19-00 use:
8 Online Software Tutorial

Introduction
> source /afs/cern.ch/atlas/project/tdaq/cmt/bin/cmtsetup.[c]sh
online-00-19-00

When using the Online SW, in order to be a bit more independent of others using
the same distribution (your local install, or the public AFS version), it is possible to
make your own IPC Reference File (see the Online Software FAQ on the Online
Software web site for an explanation of what an IPC Reference file is). To do this,
setup the evironment as described above and run the following command:

> export
IPC_REF_FILE="/some/new/path/that/you/choose/ipc_root.ref"

> ipc_server -i $IPC_REF_FILE &

You can then always use your ipc_root_ref file just by setting the environment
variable IPC_REF_FILE to its location.

Installation of
Training package

The training package can be copied from the installed Online software release,
${TDAQ_INST_PATH}/share/data/training directory.

To install the training exercises using an installed Online software release just copy
the training directory (with all the subdirectories and files) into a directory of
your choice. For example, to copy the training exercises from the release of the
Online software available via AFS use the following command:

> cp -r ${TDAQ_INST_PATH}/share/data/training .

Training
Documentation

 The training documentation can be found in the training_doc.pdf and
training_doc.ps files in the ${TDAQ_INST_PATH}/share/doc/training
directory of the installed Online software release.

Source Code The directory tree containing source code of the skeletons and templates used for
the exercises is structured as follows:

training/

 controller/ # crate controller exercise

 panel/ # GUI panel exercise

 diagnostics/ # diagnostic test exercise

 databases/ # holds partition database file

 monitoring/ # monitoring test exercise

 histogramming/ # histogramming test exercise

 resources/ # resource manager test exercise

The training directory is the root directory of the training exercises and the path
of this directory is referred to by the environment variable MY_PATH. When you
have copied the training exercises, source the configuration script:

> cd training

> source ./.training.sh

This script sets all the environment needed to build the training code against the
release on your platform and also sets the environment variable MY_PATH which is
Online Software Tutorial 9

Introduction
referred to in this tutorial. Note for it to be set properly you must be in the training
directory when you source the setup script.

Solutions The completed working solutions for each of the exercises are available in the
solution directory below each exercise directory:

${MY_PATH}/

 controller/solution

 panel/solution

 diagnostics/solution

 monitoring/cpp/solution

 monitoring/databases/solution

 monitoring/java/solution

 histogramming/raw_provider/solution

 histogramming/root_display/solution

 resources/solution/cpp

 resources/solution/databases

Example
configuration

To perform the exercises, an example configuration has been defined
(Illustration 1.0). This configuration is a simple partition that can be simulated on
the computer being used for the tutorial. The partition represents a detector made
of a single Read-OutCrate crate. The crate contains a single module. The module
has one important parameter associated with it - a counter that will be the primary
interest of the exercise.

A partition of this format has been defined in a database and is available for use in
the exercises. The database files that contain the definition of the partition are held
in the databases directory:

${MY_PATH}/databases/partition_name.data.xml

${MY_PATH}/databases/partition_name.hw.data.xml

${MY_PATH}/databases/partition_name.sw.data.xml

Where partition_name is train_01.

The information is split accross the three files according to the following schema
(see the "Configuration Database User’s Guide" for more information):

• software database: software objects, resources, programs, environment and
parameters;

• hardware database: workstations, cpu boards, detectors, crates, modules
and parameters;

• main database: configuration including used schema and data files,
partition, applications (including run control and sampling applications),
10 Online Software Tutorial

Introduction
event sampling criteria, environment and parameters.

Setting up the
example

database

The example databases need to be modified according to your local installation. It
is necessary to ensure that the host on which you will run the training exercises is
defined inside the database. Workstations (or PCs) are defined in the hardware
repository datafile train_01.hw.data.xml which is also in the databases
subdirectory. Inside this database file, a Workstation object with the identity
MyWorkstation is defined. You must modify the Name attribute of MyWorkstation to
set it to the host name of your own workstation. Inside the database file, a
CPU_Board object with the identity Virtual_CPU is defined. You must also change
the Name attribute of Virtual_CPU to set it to the host name of your own
workstation. Check that the BinaryTag and RemoteLoginCommand attributes of
MyWorkstation and Virtual_CPU are also correct for your local machine (default
values for these attributes as ’i686-rh73-gcc295’ and ’ssh’ must be OK for the most
of Linux boxes).

To edit the configuration database you can either use your favorite editor and
modify the XML directly (be sure to make a copy of the file first!) or use the
graphical database editor confdb_gui utility. This utility takes the full path of the
partition database file (or its relative path to where you are) after the "-p" command
line flag. To get the full path of the main partition file use the
confdb_get_data_filename.sh script as in:

> confdb_gui -p ‘confdb_get_data_filename.sh‘

If you are in the databases directory then the command is simply

> confdb_gui -p train_01.data.xml

When the database files are loaded into the confdb_gui, there may be warnings
appearing in the status window. This happens because the database editor, after

Illustration 1.0 Example partition
Online Software Tutorial 11

Introduction
loading each database file, reports any objects which are referenced but nor yet
found. However there should be no more warnings appearing after the last
"Reading X objects from data file YYYY ..." message.

To edit the workstation object MyWorkstation with the confdb_gui, use the item
"Hardware" on the "Edit" menu. Left click with the mouse on the MyWorkstation
object (note if the left click does not do anything, then try the right click and select
modify on the popup menu). The attributes of the object appear. To edit the "Name"
attribute, left click on the current value until a cursor appears and type in the name
of your workstation. To change the "BinaryTag" attribute, left click on the current
value and choose the appropriate option from the list.

To edit the CPU_Board object Virtual_CPU, open out the tree of objects as shown in
Illustration 1.0. Do this by clicking the right mouse button over the detector object
and selecting the "Show relationships" item of the popup menu. Do the same thing
to the oject that has just appeared (Crate) as so on until you see the icon for the
Virtual CPU object. Edit this object as you did for the workstation object.

When the changes are done then close that window, and go back to the window
entitled "Configuration Databases Editor", and showing the loaded files. There
select the item "Save" on the "File" menu. Exit from the database editor.

Verify database
contents

After performing all the changes you must verify the database contents. You can
verify the configuration database contents with confdb_check_data utility,
using the following command line:

> confdb_check_data

Be sure that the utility does not report any errors before continuing (warnings can
be ignored.)

More examples
and

documentation

You can see more example applications that use the Online software here:

> $TDAQ_INST_PATH/share/example

To see further details of the APIs used in these exercises you can look at the user
manuals for each component that are available from the component web pages of
the Online Software website at:

http://atlas-onlsw.web.cern.ch/Atlas-onlsw/

 Some good
advice

Don’t try to skip the first exercise, the other exercises depend on its successful
completion.
12 Online Software Tutorial

Chapter 2
Crate Controller

This part of the exercise explains how to develop a simplified ROC crate controller
in C++ using the Run Control controller skeleton. You will learn how a controller
operates according to the standard finite-state-machine and how to access other
Online software components from a controller.

The run-control
system

The run control is one of the software components of the ATLAS Online software. It
controls data-taking activities by coordinating the operation of the DAQ
sub-systems, Online software components and other systems. It has user interfaces
for the shift operators to control and supervise the data-taking session and software
interfaces with the DAQ sub-systems and other Online software components.
Through these interfaces the run control can exchange commands, status and
information used to control the DAQ activities.

Through the user interface the run control receives commands and information
describing how the user wants the experiment to take data. It allows the operator to
select a system configuration, parameterize it for a run and start and stop the data
taking activities.

The run control system operates in an environment consisting of multiple partitions
that may take data simultaneously and independently. Each copy of the run control
is capable of controlling one partition.

The run control needs to send commands to the other systems in order to control
their operation and to receive change of state information. The external systems are
autonomous and independent of the run control so their detailed internal states
remain hidden. If a system changes state the run control reacts appropriately, for
example, stopping the run if a detector is no longer able to produce data. The run
control interacts with a dedicated controller for each sub-system.
Online Software Tutorial 13

Crate Controller
Controller A controller receives commands from the outside world. Commands cause a
controller to execute actions which potentially change the state of the controlled
apparatus. The state of the apparatus is published by the controller to make it
“visible” to the outside world. A controller can also react to local events occurring
in the apparatus under its responsibility (for example buffer overruns). Typically its
reaction will be to execute some actions and potentially change its visible state.

A controller uses other Online components to fulfill specific functionality:

• its parameters and relationships with other controllers are retrieved from the
configuration database,

• it is notified of the state of its child controllers via the Information Service (IS). It
also publishes its own state information in the IS,

• it produces MRS error messages to inform other programs if errors occur.

The interaction between a controller and the other Online software is shown in
Illustration 2.1.

Controller state
machine

The behaviour of a controller is modelled by a state machine (see Illustration 2.2).
The state machine represents the state of the apparatus under its control and how it
reacts to commands.

Although the status of each piece of controlled apparatus is modelled by the same
set of states, the actions required to cause the apparatus to change from one state to
another will be different. The controller skeleton has been designed to be a general
template. Developers of the various controllers in different parts of the experiment
customise the behaviour of their particular controller by adding code to implement
the required behaviour within this generalised framework.
14 Online Software Tutorial

Crate Controller
Illustration 2.1 Interactions between a controller and other Online software components

Illustration 2.2 Simplified controller state machine

Controller
error

controller parameters

Configuration
database

Information
Service

Message Reporting
System

operator or
parent controller

messages

and hierarchy

commands

child controller state
change notifications

controller’s
state

Fault

DAQActivity

Initial

Loaded

Running

Paused

Active

Dead

Alive

Run_Controller

Configured

enter

error

loadunload

configunconfig

enter

start

step

stop

pause

resume

reset

enter

clear

killterminate

BadOK
Online Software Tutorial 15

Crate Controller
Usings Threads
In The Controller

In an additional exercise you can experiment with continuous actions to be
perfomed while the controller has a certain state. This can be perfomed either by
the use of periodic alarms or by dispatching an independant thread.

The solution using periodic alarm has significant advantages: You can stay in the
single threaded mode, which is gerally speaking a considerable safer environment.
In cases where a periodic action has to be taken, this is the solution which
technically better fits the problem. A typical example would be the regular
updating of an IS information.

Starting seperate threads leads to more complex application designs. While a
certain class of applications can profit from multithreading, in some cases
synchronisation between the task can introduce a significant overhead and
minimises the gain.

This consideration is also important for the libraries used by the application. They
might contain no synchronsiation mechanisms either due to design or performance
reasons. This is a common feature of complex libraries and also the Online
Software.

Having said all that, there are cases where the use of threads is adequate. Extending
the controller exercise, an example is proposed where an additional thread is
detached to cycle the foreground (grid) colour of the workstation’s display
background, while the controller is in the running state.

The example uses the thread wrapper provided with the CORBA package. It
provides a simple solution to dispatch threads. More complex design will most
probably require the use of a more powerful package, as the thread package from
the dataflow group.
16 Online Software Tutorial

Crate Controller
Online Software Tutorial 17

Crate Controller
ROC crate
controller

example

In this part of the exercise you will use the controller skeleton to develop an
example ROC crate controller. Obviously, we do not have a true ROC crate
available so the actions performed on the crate (apparatus) and the events it returns
are simulated using software which runs on the computer used for the training.

The example controller operates within a partition made of one ROC crate which
contains a single module. The module needs to be sent commands to be properly
configured before a run. To simulate sending the module commands, you are asked
to send commands to the X Window Server of the training computer that set the
background colour of the screen. The commands should be sent when entering the
various states of the controller’s state machine as shown below:

– Initial - white

– Loaded - yellow

– Configured - magenta

– Running - green

– Paused - grey

The module has a counter which should be initialised and monitored while in the
Running state. The counter value should be published in the Information Service so
that it can be viewed by the operator. The value used to initialise the counter must
be retrieved from the database when the controller is started. To simulate
monitoring the counter during the run, a regular timer will be created and at each
timer interval (3 seconds) the counter should be incremented and then published in
the Information Service.

An MRS message (ROC-start/stop) should be sent on entering/exiting the
Running state and when the controller is configured.

Illustration 2.3 shows all the actions associated with each state and transition of the
controller’s state machine.

Every transition in the diagram has an associated action. The action is a method
that should return an integer value. If the value returned is zero then the transition
is considered to have completed succesfully. If it returns a non-zero value then it is
considered to be an error so the controller makes the transition but also enters the
Bad state and sends an MRS error message reporting the problem.

In addition to transition actions, every state has an associated entry and exit action.
These are executed every time the state is entered or exited, regardless of the event
which caused the transition. State entry and exit actions are assumed to complete
successfully and do not return a value. Each of these actions (transition and state
entry and exit) can be user-defined.

A signal handler can be defined that is called when a signal is passed to the
controller by the host operating system. The signal handler is used in this example
exercise to execute the activeExit() method if controller exits (i.e. when the KILL
signal is received).
18 Online Software Tutorial

Crate Controller
Illustration 2.3 Actions to be performed by controller

Fault

DAQActivity

Initial

Loaded

Running

Paused

Active

Dead

Alive

Run_Controller

Configured

enter

error

loadunload

configunconfig

enter

start

step

stop

pause

resume

reset

enter

clear

killterminate

BadOK

On Enter:
set screen magenta

On Enter:

set screen green

On Enter:
set screen yellow

On Enter:
set screen grey

On Enter:
set screen white

On Exit:

send MRS message
start timer

cancel timer

insert IS info
send MRS message

remove IS info

remove IS info
On Exit:

On Exit:
send MRS message

get counter
value from db
Online Software Tutorial 19

Crate Controller
rc_interface class The rc_interface class encapsulates the controller skeleton. It has virtual methods
defined for all state entry, exit and transition points. For example the entry method
of the Running state is called enterRunning(), the exit method is exitRunning() and
the action method for the pause transition is pauseaction(). By default, all methods
are empty and action methods return zero (i.e. complete successfully). No
parameters are required for any of the methods.

To build a controller you must define a class that inherits from the rc_interface class
and overload the appropriate methods to perform the necessary actions.

For this exercise, such a controller class has already been defined, called
RCCrateExampleUser (Illustration 2.4), but a few commands are missing from its
methods which you will need to complete. By studying the diagram on the
previous page and the code that already exists in other methods of the class, it
should not be to difficult to add the missing commands.

Accessing the
source code

The source code for the controller is held in the controller subdirectory. These
are the important files:

rc_crate_example_user.h RCCrateExampleUser definition

rc_crate_example_user.cxx RCCrateExampleUser declaration

rc_crate_example_ctrl.cxx controller main program

Makefile makefile to compile and link the controller

To browse and modify the source code, open the rc_crate_example_user.h &
rc_crate_example_user.cxx source files in your favourite editor (e.g. nedit).
20 Online Software Tutorial

Crate Controller
Illustration 2.4 RCCrateExampleUser class: attributes and methods

RCCrateExampleUser

+ exitAlive:void
+ enterInitial:void
+ exitActive:void
+ enterRunning:void
+ exitRunning:void
+ enterPaused:void

+ enterConfigured:void
+ unconfigaction:int
+ enterLoaded:void
+ configaction:int
+ myInit:void
+ updateCrateIS:void
+ setColour:void

- initIS:int

+ exitPaused:void

+ continuousThread:static void *
+ regularCallBack:static bool

- moduleISInfoName:string
- moduleISInfo:ISInfoInt
- publishAlarm:IPCAlarm *
- crateName:string
- isServerName:string
- threadStopped:bool
- threadPaused:bool
- fgColourIdx:int
Online Software Tutorial 21

Crate Controller
Setting the
screen colour

To simulate sending commands to a module or device, the controller should set the
colour of the background of the computer screen. A method called, setColour, has
been added to the RCCrateExampleUser class. This method is called from most
state entry methods (see Illustration 2.5). As defined in the specification for the
controller (see See “ROC crate controller example” on page 18.), the screen
background should be set to yellow when entering Loaded.

• Modify the name for the display to your own in the
XSETROOT_CMD definition at the beginning of the
rc_crate_example_user.cxx file. Verify the path used in
the command for the xsetroot binary is correct on your
machine (Do the same for XSETROOT_CMD_FG, it shall be used
later for the thread example).

• Modify the source code (.cxx & .h) to overload the Loaded state
entry method and set the screen background to yellow.

Sending MRS
messages

Controllers send MRS messages to inform other sub-systems and the human
operator of any important occurrences inside their apparatus. MRS messages are
not the equivalent of a print statement and should not be used as a debugging tool
(for this it is better to use the cout stream.)

The controller skeleton uses MRS internally for such purposes as sending a
message when the controller enters the Bad state. It opens an MRS stream during
initialisation and this stream is made available to controller developers via the
rcMRSstream attribute of the rc_interface super-class.

The specification for the controller says an MRS message (ROC-start/stop) should
be sent on entering/exiting the Running state and when the controller is
configured. The code provided for the exercises does this already except for
sending the ROC-start message when entering the Running state (see
Illustration 2.6). The ROC_start message should have the following attributes:

Message name crateName_START

Message severity Information

Message text crateName-crate started operation

Message qualifier ROC

• Modify the source code to send the ROC-start MRS message
when entering the Running state.
22 Online Software Tutorial

Crate Controller
Illustration 2.5 Example entry method

Illustration 2.6 Example of sending an MRS message

rc_crate_example_user.h:

virtual void enterConfigured();

rc_crate_example_user.cxx:

void RCCrateExampleUser::enterConfigured() {
setColour("magenta"); }

rc_crate_example_user.cxx:

mout() << crateName+”_STOP" << MRS_INFORMATION
<<MRS_TEXT(string(crateName).append("-crate stopped
operation")) << MRS_QUALIF("ROC") << ENDM;
Online Software Tutorial 23

Crate Controller
Publishing IS
information

Controllers publish IS information to inform the other sub-systems and the human
operator of apparatus specific information that may change during a run. For
example, a ROC module may publish counter values representing the number of
event fragments treated since the start of run, how many have been rejected by the
trigger etc. Such information should be updated at regular intervals but not at a
high frequency because the IS is not a real-time facility. An update interval of
several seconds is normally suitable.

The controller skeleton uses the IS internally to publish it’s state information. It
creates an ISInfoDictionary object during initialisation and this dictionary object is
made available to controller developers via the is_dict attribute of the rc_manager
class from which rc_interface itself inherits.

In order to publish a piece of information in the IS, it must first be inserted into a
server. This is done during the Configure transition (see Illustration 2.7).

The specification for the controller says a counter value for the module in the ROC
crate should be published every 3 seconds while in the Running state. A timer
facility is provided by the ILU package on which IPC is built and this is available in
the skeleton via the createTimer and cancelTimer methods. These methods are used
in the Running state entry and exit methods of the example controller to manage a 3
second timer. When the timer fires, the callback method updates the information in
the IS server with the latest value of the counter.

Finally the information is removed from the IS server during the unconfigure
transition. However, if the controller is forced to reset (i.e. receives a reset
command) or exit (i.e. receives a kill command) then the unconfigure transition will
not be made and the information will remain in the IS server. To avoid this
situation, the code to remove the IS information has also been added to the exit
method for the Alive state.

• Modify the source code to remove the module counter
information from the IS server when performing the
Unconfigure transition.

Modify the
database

The train_01.hw.data.xml database file, from the databases subdirectory,
contains the hardware repository for the configuration presented earlier. As
mentioned in the introduction chapter, this database file should be modified to
include the hostname of your own workstation. Please refer to the section “Setting
up the example database” in the introduction chapter for how to do this.
24 Online Software Tutorial

Crate Controller
Illustration 2.7 Example timer, IS insert, update and remove actions

rc_crate_example_user.cxx:

Initialise a timer:

publishAlarm =
rc_commManager::createTimer(3,®ularCallBack, this);

Cancel a timer:

rc_commManager::cancelTimer(publishAlarm);

Insert an IS information:

rc_manager::is_dict->insert(moduleISInfoName.c_str(),
myISInfo);

Update an IS information:

rc_manager::is_dict->update(moduleISInfoName.c_str(),
myISInfo);

Remove an IS information:

rc_manager::is_dict->remove(moduleISInfoName.c_str());
Online Software Tutorial 25

Crate Controller
Retrieving
information from

the Configuration
Database

The specification for the ROC crate controller says that it should retrieve the value
used to initialise the counter from the configuration database when the controller is
started (Parameter class, Counter_01 object in partition_name.hw.data.xml
database). In this example, we will use the Data Access Library (DAL) to access the
database.

A method called initIS (see Illustration 2.8) has been added to the controller’s class
which retrieves the counter value from the database and uses it to initialise the
information to be published in IS. Once the database has been initialised, it is
necessary to have some basic knowledge of the schema in order to find the required
information. The schema determines how the application should navigate through
the relationships of the database class in order to retrieve the counter value:

• get physical partition

• find the crate using its name as a key

• find the first module contained in the crate

• find the first parameter of the module

• get the name and the value of the parameter

The value of a parameter can be retrieved from the databases using the get_value()
method of the ConfdbParameter class which returns a character string. The character
string can be converted to an integer value using the standard atoi C library routine.

• Modify the initIS method of the RCCrateExampleUser class to
retrieve the value of the counter parameter from the database,
convert it to an integer and store it in the moduleISInfo
attribute.

How to build the
controller

You should now have all the source code necessary for the example ROC crate
controller. Change to controller subdirectory. You can now build the controller
using the makefile provided:

> make # compile and link the controller
26 Online Software Tutorial

Crate Controller
Illustration 2.8 code extract from the initIS method

rc_crate_example_user.cxx:

ConfdbConfiguration confDb((const char *) 0, (const char *) 0,
(ConfdbConfiguration::CreateObjectFN) 0,
(ConfdbConfiguration::InitFN) 0);

if (confDb.get_status() != ConfdbDataFlowConfiguration::Success){
cerr << " ERROR: Failed to load database" << endl;
return -1;

} else {
cout << "RCCrateExample: initialized database" << endl;

}

//find the crate in the database
ConfdbCrate * myCrate = confDb.find_crate

(RCCrateExampleUser::crateName);
if (myCrate == 0) {

cerr << "RCCrateExample: did not find the crate " << crateName
<< endl;

return -1;
}

cout << "RCCrateExample: found crate" << myCrate->get_name() << endl;

//try to get the first module in the module list of the crate
const list<ConfdbModule *> moduleList= myCrate->modules();
ConfdbModule * module = *(moduleList.begin());
if (module == 0) {

cerr << "RCCrateExample: No modules defined in crate " <<
crateName << endl;

return -1;
}
string moduleName(module->get_name());
cout << "RCCrateExample: found module" << moduleName << endl;

//try to get the first parameter in the parameter list of the module
const list<ConfdbParameter *> paramList= module->parameters();
ConfdbParameter * counter = *(paramList.begin());
if (counter == 0) {

cerr << "RCCrateExample: No parameters defined in module " <<

moduleName << endl;

return -1;
}

cout << "RCCrateExample: found counter" << endl;
string counterName(counter->get_name());

//set start value for the counter from the parameter
//initialize the IS info
// add code to get parameter from DB, convert to integer and store in
moduleISInfo here
Online Software Tutorial 27

Crate Controller
How to test the
controller

When your controller compiles and links correctly, you can test it as part of the
small partition introduced at the start of the tutorial. The play_daq script can be
used to start the partition but it needs to have a few environment variables set first
so make sure your have the following variables defined in your environment:

TDAQ_DB_DATA This defines the data file holding the partition. It should point
to the partition data file in the databases directory (See “Source
Code” on page 9.), for example:

> export TDAQ_DB_DATA=${MY_PATH}/databases/
partition_name.data.xml

Where partition_name is the name of the partition, train_01.

Once you have verified your environment, you can start the partition by calling the
play_daq script but note that you should start a new terminal window to do this
(i.e. do not run play_daq from the console):

In the other window start play_daq script:

> export DISPLAY=your_display:0.0 # set your display

and make sure the controller can write to the screen (e.g. use xhost +).

> play_daq partition_name no_obk # start the partition without book-keeper

The no_obk option tells play_daq not to start the online book-keeper. This
involves a lot more resources and is not useful in the context of the training. When
the IGUI appears you should press boot to cause your controller to be started by the
DAQ Supervisor. You can then send it different run control commands to change its
state and put it in the Running state.

Verify the controller behaves according to the specification and then stop the
partition by pressing shutdown and exit.

Note that in the IGUI, the MRS Panel will by default not show any messages. This is
because the selection criteria for the MRS messages excludes all INFORMATION
messages by default. You should set the selection so that the MRS messages from
the controller can be seen and checked (selecting ALL for the subscription in the
MRS panel).

Checking IS
information

You can check if your controller is publishing the correct information to IS by using
one of the programs intended for developers (not end-users) when your partition is
Booted and in the Running state. The is_monitor (see Illustration 2.9) provides a
basic GUI for viewing IS information:

> is_monitor

• Select the name of your partition.

• The list of IS servers will appear.

• Select DF then press Show Info List and the list of information items will
appear

• Select your parameter and its value will be displayed.

• Wait while the partition is in the running state to see the information changing.
28 Online Software Tutorial

Crate Controller
Online Software Tutorial 29

Crate Controller

30
Illustration 2.9 is_monitor application
Online Software Tutorial

Crate Controller
Exercise to add
an ILU thread in

the crate
controller

In this extension of the controller exercise, you can add an additional thread to the
controller, to cycle the foreground (grid) color of the workstation’s display
background, while the controller is in the running state. The thread should be
started when the Running State is entered and stopped when the Running state is
finished. In addition it should pause execution during Paused State.

Thread
declaration and

initialisation

• In order to make the ILU multi-threaded mode available, you have to
check that a header-file include statement has been added in the header
file. A method to change the foreground color and a method to describe
what the thread is going to do must be implemented. They have to be
declared in the public section of the RCCrateExampleUser class. The
boolean variables threadStopped and threadPaused together with the
integer fgColourIdx must be declared in the private section of the
RCCrateExampleUser class (See Illustration 2.10).

• You have to initialize the ILU multi-threaded mode in the controller’s
main program (See Illustration 2.11).
Online Software Tutorial 31

Crate Controller
Illustration 2.10 Thread additions to rc_crate_example_user.h

Illustration 2.11 Initialisation of multi-threaded mode in controller

In file rc_crate_example_user.h

#include <ilu/threads.h>
...

// overloaded setColour method:
void setColour(const string &colourFg, const string

&colourBg);
// static routine to be dispatched:
static void * continuousThread(void * parameter);

...

private:

...
// communication with the thread:
bool threadStopped;
bool threadPaused;
int fgColourIdx;

...

In file rc_crate_example_ctrl.cxx

...
unsigned status = cmd.parse(argv_iter);
if (status) {
cmd.error() << av[0] << ":parsing errors occurred!" << endl;
return status;
}

#ifdef THREAD_EXAMPLE
IPCCore::init(true); // Initialize in multi-threaded mode

#endif
...
32 Online Software Tutorial

Crate Controller
Thread
implementation

• In the user file, the above declared methods have to be implemented.
Also, when entering the Running state, a thread has to be initialized
and started (See Illustration 2.12).

• Add in the rc_crate_example_user.cxx file communication code with the
thread. An example is provided in the enterPaused method where
the statement “threadPaused = true;“ has already been added.

• Make sure that when the controller is initialized, threadStopped is
set to true (method RCCrateExampleUser::myInit in file
rc_crate_example_user.cxx).

How to build the
controler with the
thread extension

• In the Makefile you will have to uncomment the line that defines the
THREAD variable (# THREAD = -DTHREAD_EXAMPLE).

• Run “make clean”

• Run “make“

NOTE: To test the controller with the thread extension, use the play_daq program
as described above (see page 28).

Modify the
parameter value
in the database

You can modify the initial parameter value retrieved from the database by using
the database configuration editor:

> confdb_gui -p $TDAQ_DB_DATA

• From the Edit menu select Hardware

• In the Hardware window hold down the right mouse button over the detector
to reveal the pop-up menu and select show relationships

• Show the relationships for the crate and module

• Click on the Parameter with the left mouse button to see the Parameter’s
attributes

• Click the left mouse button on the Value field and set it to your chosen value

• Select Save from the File menu of the main window then Exit

For your modification to take effect the controller must re-read the database
contents. According to its specification, it does this during the load transition so
you must use the IGUI to put it back in the Initial state.
Online Software Tutorial 33

Crate Controller
Illustration 2.12 New methods for multi-threaded controller

In file rc_crate_example_user.cxx

...
void RCCrateExampleUser::setColour(const string &colourFg,const string
&colourBg) {
string command = XSETROOT_CMD_FG + colourFg + " -bg " + colourBg;
int i = system(command.c_str());

if (i) cerr << "RCCrateExample:system call to set fg colour failed:" << i
<< " ’" << command << "’" << endl;
else cout << "RCCrateExample: fg colour set to " << colourFg << endl;

}

void * RCCrateExampleUser::continuousThread(void * parameter) {

RCCrateExampleUser * that = static_cast<RCCrateExampleUser*>(parameter);
cout << "---------------> Starting thread ..." << endl;
while (! that->threadStopped) {
while (that->threadPaused & ! that->threadStopped) {
usleep(100000);
}
if (that->threadStopped) {
cout << "===============> Ending thread ..." << endl;
return 0;
}
switch(that->fgColourIdx) {
case 0:
that->setColourFg("blue", "green");
break;
case 1:
that->setColourFg("red", "green");
break;
case 2:
that->setColourFg("magenta", "green");
break;
default:
that->setColourFg("white", "green");
break;
}
usleep(500000); // sleep 500 ms
that->fgColourIdx = (that->fgColourIdx+1)%4;
}
return 0;

}
...
void RCCrateExampleUser::enterRunning() {

//start regular IS info update when entering the Running state
publishAlarm = rc_commManager::createTimer(3, & regularCallBack, this);
* rcMRSstream << string(crateName).append("_START").c_str()
<< MRS_INFORMATION << MRS_TEXT(string(crateName).append("-crate started
operation").c_str()) << MRS_QUALIF("ROC") << ENDM;
setColour("green");

#ifdef THREAD_EXAMPLE
// Initialize and start a thread when entering the Running state
// if there is no running thread (resuming from Paused state).
if (threadStopped) {
threadStopped=false;
threadPaused=false;
fgColourIdx=0;
ILU_ERRS((no_memory, no_resources,internal)) err;
ilu_OSForkNewThread((ilu_TransportInputHandler)
RCCrateExampleUser::continuousThread, this, &err);
}

#endif
}
...
34 Online Software Tutorial

Crate Controller
Detecting faults If you have a problem starting the partition you can use the diagnostics package
(See “Diagnostics Test” on page 43.) to determine the error. The play_daq and
Online software also produces log files for each program that is run and you use
the log files to see the exact details of what was executed. The log files are written
by default to this directory:

${HOME}/logs/<partition name>/<user>/ # log file directory

When you need to change the path where all the logs files are written you have to
redefine the environment variable TDAQ_LOGS_PATH (general log path) and the
environment variable PMG_PROCESS_LOGS_PATH (log path for the processes
started by the PMG Agent) before calling play_daq as follows:

> EXPORT TDAQ_LOGS_PATH=<your own logs path>

> EXPORT PMG_PROCESS_LOGS_PATH=<your own logs path>
Online Software Tutorial 35

Crate Controller
36 Online Software Tutorial

Chapter 3
GUI panel

This part of the exercise shows you how to develop a simple panel in Java to
visualize and track the value of a parameter of a module in the ROC crate. The
panel will be integrated with the standard Online Integrated GUI.

The integrated
GUI

The Integrated Graphical User Interface (IGUI) is one of the software components
of the Online Software sub-system of the ATLAS Trigger/DAQ project. The IGUI
(see Illustration 3.1) is intended to give a view of the status of the data acquisition
system and its sub-systems (Dataflow, Event Filter and Online) and to allow the
user to control its operation.

The IGUI interacts with many components in a distributed environment and uses
CORBA interfaces for communication with other components. It has a modular
design for easy integration with different sub-systems. It is implemented in Java
and uses the Java Foundation Classes (JFC) for portability and swing for graphical
widgets.

IGUI is a Java application (JFrame). On the left side of the frame are displayed the
Main Commands and below are some major Run Parameters, such as run and
event number. On the right side there are different Panels which can be chosen by
clicking the corresponding tab buttons:

• Run Parameter panel, which is the default view, showing all the run
parameters and allowing the user to set them;

• Run Control panel, showing the tree and status for each controller with the
possibility to send commands to a particular controller;

• DAQ Supervisor panel, containing the DAQ Supervisor expert commands;

• Process Manager panel, showing the list of PMG agents and processes;

• MRS panel, showing all the messages received grouped in a table and allowing
the user to change the filter, subscription and log control;

• Data Flow panel, showing the data flow configuration and data flow
parameters.

Others panels could be added, displaying the status of other DAQ components or
sub-systems. The aim of the exercise is to show how such a panel can be developed.
Online Software Tutorial 35

GUI panel
On the bottom of the main frame there is a MRS message display panel, showing all
the received MRS messages.

Illustration 3.2 shows the interaction between the IGUI and other Online
components. The IGUI reads the list of partitions from the Inter Process
Communication (IPC) server and lets the user select one of them. In interaction
with the Resource Manager server the type of the access control is decided (only
status display, normal user control or DAQ expert control). The run control
configuration and the data-flow configuration are read from the configuration
database. The information about the sub-systems or components status (run control
status, lists of Process Manager agents and of running processes, Data-Flow
modules statistics) is read from the Information Service (IS) or is automatically
obtained using the IS notification mechanism. The run parameters can be set by the
user and are stored in the Information Service. Through the IGUI the user can send
commands to the Run Control main components (DAQ Supervisor and Root
Controller). The messages sent by the Message Reporting System are received and
displayed by the IGUI. The user can send commands to the MRS (to change the
filter or subscription criteria, to set the log control). The IGUI can be a client of the
Process Manager, allowing to start auxiliary processes (monitoring tasks,
bookkeeping tasks, etc.).

In order to give the developer of a new panel the possibility to use some of the
classes designed to interact with different components, the on-line documentation
(Illustration 3.3) of the IGUI (packages, classes, attributes, methods) can be found
at:

http://atddoc.cern.ch/Atlas/DaqSoft/components/is/online-doc/index.html

IGUI panel
example

In this part of the exercise you will develop a panel to display the information
published and updated by the crate controller developed in the first part of the
exercise.

In order to be added to IGUI, the only requirement for a panel is to extend the
IguiPanel class in the package igui. IguiPanel extends the class javax.swing.JPanel
and defines some interfacing methods which are common for each Panel and which
each Panel have to supply (e.g. a method returning the panel name).

The panel will contain only two labels, one for the parameter name (read from
database) and another for the parameter value (updated by IS notification).

RDB interface The panel needs from the database the information about the configuration (crate,
module, parameter). The IGUI gets this information through the Remote Database
(RDB) server using the igui.RdbInterface class which implements the CORBA client
side for remote database access. The following methods are useful for the panel
design:

• findPartition - checks that the working partition is defined in the database;

• getObjectList - gets a list of all the objects related by a relationship to an object
in the database (for example all Crates contained in a Detector).
36 Online Software Tutorial

GUI panel
Illustration 3.1 Integrated Graphical User Interface

Illustration 3.2 IGUI context diagram

IGUI

Configuration
Database

Message
Reporting

System

Information
Service

Run
Control

Process
Manager

Resource
Manager

Inter
Process

Communication

control configuration
detector configuration

informations
run parameters

commands

permission
authorization

messages
commands

status
commands

partition list
Online Software Tutorial 37

GUI panel
IS interface For the interaction with the Information Service there is a special Java package, is,
with classes as AnyInfo, InfoEvent and Repository and the interface InfoListener.

The Repository class (Illustration 3.3) contains methods to get information from the
IS (getValue), to create new information (insert) and to update it (update) or to
remove it (remove). In addition the subscribe mechanism is implemented (methods
subscribe and unsuscribe) to have the IGUI notified each time the IS information
changes. The subscription method passes as parameter an object that implements
the InfoListener interface. The user must define the specific actions to be done
when notification occurs in the infoCreated, infoUpdated and infoDeleted methods
of a class implementing the InfoListener interface. When a notification occurs, the
information is passed as an InfoEvent object. The InfoEvent class has the method
getValue which sets the attributes values of the information object to the values
corresponding to the current event. It is possible to pass to this method either an
object of the AnyInfo class or an object of the same class as the class of the object
whose change is reported.

In the actual design the DAQ configuration uses six IS servers (four for the
information published by Online components, Run Control, Process Manager,
Monitoring and Hostogramming, one for Data-Flow sub-system and one for Run
Parameters). For this exercise the Data-Flow IS server will be used (the server name
is “DF”).

IGUI panel
methods

The panel will have a constructor and two methods, one to read from database the
parameter and information names and another to execute the specific action (set the
text in the parameter value label) when the information is updated.

In the constructor (RodPanel), the following operation will be performed:

• get the partition name from the class in which panel will be inserted;

• read database to find the parameter and information names;

• add labels to the panel using a Grid Layout;

• subscribe for notification on the IS server.

The method to read from the database through RDB server (readBD) uses the
RdbInterface class. It is supposed that in the database there is only one crate,
having one module with one parameter. The following steps have to be done:

• find the Partition object;

• get the name of the detector (related to the Partition by a “UsesDetectors”
relationship);

• get the name of the crate (related to the Detector by a “Contains” relationship);

• get the name of the module (related to the Crate by a “Contains” relationship);

• get the name of the parameter (related to the Module by a “HasParameters”
relationship);

• information name is obtained as:

serverName.crateName.moduleName.parameterName

• use the parameter name to set the text in the parameter name label.
38 Online Software Tutorial

GUI panel
Illustration 3.3 On-line documentation for Repository class

Illustration 3.4 RodPanel attributes and methods

RodPanel

readDB()
infoUpdated(...)
Online Software Tutorial 39

GUI panel
The method to execute the specific action when the information is updated
(infoUpdated) will set the text on the parameter value label using the information
received by the callback mechanism. The code has to:

• check if the information name is correct;

• retrieve the information from the InfoEvent;

• use the information data to set the text in the parameter value label.

IguiPanel
Interface

Each user panel for the Igui Frame has to extend the class IguiPanel which defines
some methods the user panel has to supply like a method panelDeselected() which
should contain the code which should be executed, when the panel is closed.

One of the method is called getTabName() which gives back the name of the panel
which should be used for the tab buttons in the IGUI frame. This method has to be
supplied by you.

All the methods which are declared abstract in the class IguiPanel have to be
declared, however, if there is nothing to be done, one can just declare an empty
method.

Accessing and
modifying the

source code

The source code for the panel (Illustration 3.4) is held in the panel subdirectory.
The file to edit is:

 RodPanel.java

To browse and modify the source code, open the source file in your favourite editor.

The source code does not contain the interaction with the Information Service. If the
code is compiled and tested, the panel will have the labels, but the parameter value
will be not updated.

Modify the source code to add the following to the RodPanel class:

• the subscription to IS in the constructor; (Illustration 3.5)

• an infoCreated method; (same as infoUpdated)

• an infoUpdated method; (Illustration 3.6)

• an infoDeleted method (empty method)

• an getTabName method (Illustration 3.7)

Compiling and
testing the panel

Verify the environment variable PATH includes a reference to the jdk directory (e.g.
/afs/cern.ch/sw/java/XXXXX/jdk/sun-1.4.1/bin)

Verify the environment variable CLASSPATH includes ${MY_PATH}/panel,
${MY_PATH}/monitoring/java and all the jar files (ipc, is, mrs, rdb, igui, dvsgui,
dvs, ed & Monitoring) held in the Online software release directory (e.g.
${MY_PATH}/monitoring/java:${MY_PATH}/panel:${TDAQ_INST_PATH}/share/lib/ipc.jar:
${TDAQ_INST_PATH}/share/lib/is.jar:${TDAQ_INST_PATH}/share/lib/mrs.jar:
${TDAQ_INST_PATH}/share/lib/rdb.jar:${TDAQ_INST_PATH}/share/lib/igui.jar:
${TDAQ_INST_PATH}/share/lib/dvsgui.jar:${TDAQ_INST_PATH}/share/lib/dvs.jar:
${TDAQ_INST_PATH}/share/lib/ed.jar:${TDAQ_INST_PATH}/share/lib/Monitoring.jar)

Change directory to the panel subdirectory and compile the code:
40 Online Software Tutorial

GUI panel
> javac RodPanel.java

To test the panel before including it in the IGUI we use a simple TestPanel class (see
TestPanel.java file in the panel directory). This class has a main method in
which the RodPanel is added to a frame. The TestPanel was automatically compiled
at the same time as the RobPanel.

To test the panel in stand-alone mode (i.e. detached from the IGUI) the following
steps have to be done:

• Verify the IPC_REF_FILE environment variable is set ;

• Start the partition (in another window):

> play_daq partition_name no_obk

Illustration 3.5 IS suscription

Illustration 3.6 infoUpdate method

is.Repository isRepository = new is.Repository (new
ipc.Partition(partition));

try {

 isRepository.subscribe(serverName, ".*", true, this);

 } catch (is.RepositoryNotFoundException ex) {

 System.out.println(" RepositoryNotFoundException in
RodPanel subscribe !");

} catch (is.InvalidExpressionException ex1) {

 System.out.println(" InvalidExpressionException in
RodPanel subscribe !");

}

public void infoUpdated(InfoEvent infoEvent) {

if (infoName.equals(infoEvent.getName())) {

 is.AnyInfo ai = new is.AnyInfo();

 infoEvent.getValue(ai);

parameterValue.setText(((Integer)ai.getAttribute(0)).toString(
));

}

}

Online Software Tutorial 41

GUI panel
• Start the TestPanel:

> java -Dipc.ref.file=$IPC_REF_FILE TestPanel partition_name

The IPC parameter is needed to establish communication.

Testing the panel
with IGUI

To test the panel integrated in the IGUI the following steps are to be executed:)

• set the PROPERTIES environment variable so that the play_daq script will start
the IGUI with your panel:

> export PROPERTIES="-Digui.panel=RodPanel"

• start the partition:

> play_daq partition_name no_obk

Illustration 3.7 getTabName method

/**
* method to return the name for the panel in the tab button
* <p>
* @return name of panel
*/

public String getTabName() {

String TabName = “MyPanel”;

return TabName;

}

42 Online Software Tutorial

Chapter 4
Diagnostics Test

This part of the exercises explains how to develop a test application based on a C++
test template. You will learn how to make your own test repository and so integrate
a new test with the online Diagnostics component.

The Diagnostics
Verification

System

The Diagnostics System (DS) is one of the software components of the ATLAS
Online software. It helps a human operator to initialize, test, setup and run the
DAQ system without deep knowledge of its structure and functional features. The
DS is designed and implemented as two separate components.

The verification component of the DS (Diagnostics Verification System) uses the
tests held in the Test Manager (TM) to test the configuration and confirm
functionality of any DAQ subsystem or a component. By grouping tests into logical
sequences, DVS can examine any component of the system (hardware or software)
at different levels of detail in order to determine the functional state of components
or the entire system.

A Test There are two distinct phases of creating a test: the first one is to write and compile
the test program and the second is to store the test in the test repository to make it
available for the Diagnostics framework.

There are a couple of requirements for a proper test program. The most important
one is that it has to return a valid test result. This result is passed as exit status of
the program, which implies that a test program should always finish with a proper
exit status. The result of the test has to comply with the POSIX 1003.3 definition and
should be of type TestResult, which is defined in the TM’s include file
<tmgr/tmresult.h>.

typedef enum tmResult
{

TmPass = TM_PASS,
TmUndef = TM_UNDEF,
TmFail = TM_FAIL,
TmUnResolved = TM_UNRESOLVED,
TmUntested = TM_UNTESTED,
TmUnsupported = TM_UNSUPPORTED

} TestResult;
Online Software Tutorial 43

Diagnostics Test
For a definition of the meaning of the results please refer to the Test Manager
component documentation (ATLAS DAQ TN 66:
http://atddoc.cern.ch/Atlas/Notes/066/Note066-1.html)

Test Repository Test repository database stores all the information about tests. A typical test is
described in a database by one instance of Test, Test4Object or Test4Class class, one
instance of SW_Object class and few instances of Program class (one instance per
platform). Test-derived classes describe test itself, SW_Object and Program classes
describe test’s implementation as for any application. All this information is used
by Test Manager (via TestDAL and via Software DAL) to execute tests.

Typically, it is the developer of the test who creates all needed database objects in
the Test Repository database (and probably the repository data file also). Developer
can create separate repository database file with his/her own tests. This repository
then shall be included in the configuration database file, so DVS and TM are able to
retrieve tests for a particular objects from the configuration and execute them in the
diagnostics framework.

Test, Test4Object and Test4Class classes are defined in
${TDAQ_DB_PATH}/online/schema/TestRepository.schema.xml. This schema
shall be loaded with any configuration that uses Test Repository. Your partition
data file train_01.data.xml already has it loaded.

For the detailed description of TestDAL and Test Repository organization please
refer to the Test DAL note, published as

http://atddoc.cern.ch/Atlas/DaqSoft/components/diagnostics/testdal/Test
DAL.html

Accessing the
source code

The source code for the test is held in the diagnostics subdirectory. These are the
important files:

test_vme_interface.cc
- test template;

Makefile
- makefile to compile and link the example test;

makefile.linux|solaris|lynxos
- platform specific makefiles included from Makefile;

To view and modify test’s source code, open the test template file in your favourite
text editor. It is shown on Illustration 4.1

Checking IS
information

In order to simulate a test for the module we propose to check the information in
the IS published by the controller. This information is the module counter. The
name of the information is taken from the database and consists of the following
elements:

 ISServerName.CrateName.ModuleName.ParameterName

The controller periodically updates this information simulating the activity of the
respective module. The following steps should be done in order to verify that the
controller is doing this properly:

• Construct the information name
44 Online Software Tutorial

Diagnostics Test
• Retrieve the information from IS

• Wait for the appropriate period of time. This period must be slightly bigger then
the information update frequency. It is enough to wait for 5 seconds.

• Retrieve the same information from IS again

• Compare the values of the two information objects (they should be different)

• Return the appropriate result

Illustration 4.1 The complete test program for controller

 // construct information name

 string name(is_name);
 name += ".";
 name += crate_name;
 name += ".";
 name += module_name;
 name += ".";
 name += param_name;

 // get the value of information objects on is_name IS server.
 // If the information is not found then return TmFail
 ISInfo::Status status;
 ISInfoInt value1;

 // insert your code to retrieve the item value1 from IS here...........

// The information for the module’s parameter shall be updated each 3
seconds, so we wait 5 seconds and check it again

 sleep(5);

 // again get the value of information objects on is_name IS server.
// If the information is not found then return TmFail

 ISInfoInt value2;

 // insert your code to retrieve the item value2 from IS here...........

 if (value1 == value2)
 {
 if (verbose){
 cerr << "ERROR:: value was not changed during 5 seconds " <<
endl;
 }
 return TmFail;
 }

 return TmPass;
}

Online Software Tutorial 45

Diagnostics Test
Retrieving
information from

IS

The value of an information item can be retrieved from the IS server using the
findValue method:

ISInfo::Status status;
ISInfoInt value;

status = id.findValue(name.c_str(), value);

Compare the status returned against ISInfo::Success to verify successful completion
of the operation.

• Modify the C++ test program template to add code that
retrieves the counter value from IS twice with a delay of 5
seconds between and then compares the two values.

Build the test Change directory to the diagnostics subdirectory and execute the make command
to build the test binary:

> make

Test Repository
Browsing

(Modification)

The Test Repository is already created for you. There is no need to modify it. It is
included in your partition database file, so you can browse and edit it if needed in
database editor started by command

> confdb_edit_data.sh -d ‘confdb_get_data_filename.sh‘

After you load the configuration, select MyTestRepository.data.xml in the list of
loaded datafiles and check all four objects defined in this repository:

two instances of Program, referring to compiled binary file for Solaris and Linux
platforms: my_test_for_linux and my_test_for_solaris

one SW_Object which implements your test it refers to both Program objects.

one Test4Object - this is most interesting object. Pay attention to the following
attributes:

• object_id - OKS ID of object you want to test. It is set to ’LDAQ@Module_01’, ID
of the virtual module you intend to test with your test. This means that you are
testing one particular module and this test is not applied to other instances of
LDAQ class. To create a test for a class, instantiate Test4Class class.

• is-a relationship - links test object with it’s implementation - SW_Object.

• timeout - set to default value 0. If you expect that your test may "hangs", put this
to some reasonable value (in seconds)

• host - the name of the host on which this test is executed by TM. If empty, the
default (local) host is used.

• parameters - command line parameters you want to pass to your test executable.
Note that for Test4Class parameters and host are configurable with help of
template syntax (See Test DAL link above for more info), but for Test4Object
they shall be specified explicitly.

• exec_mode, init_timeout and init_depends_from relationship are used to organize
46 Online Software Tutorial

Diagnostics Test
synchronous and ordered sequences of tests per one object. See TestDAL link
for more info.

Run DVS As soon as tests binaries and Test Repository are OK, DVS can be used to test
loaded configuration. DVS GUI can be started from the IGUI so use play_daq to
start your partition:

• start the partition ’train_01’ :

> play_daq train_01 no_obk

• When the IGUI appears, Boot the configuration and set it to the Running state.

Note that the partition must be Booted and Running in order for the tests to execute
successfully.

• run DVS by clicking "Diagnostics" button on the bottom of the IGUI window.

You can also start DVS as a separate application from the command line using the
dvs_gui utility. This utility takes the full path of the partition database file (or its
relative path to where you are) after the "-d" command line flag as for the
confdb_gui utility. The command line would look like:

> dvs_gui -d ‘confdb_get_data_filename.sh‘

Load and Test
Configuration

When DVS window appears, it has already loaded your configuration. Select any
component in the testable components tree at the left panel of the DVS GUI and
push the ’test’ button to start testing and diagnostics inference for this component.
To see the result and output of the test you have just implemented, select the
component module ’Module_01’ in the Hardware subtree.

Note that the test for the CPU Board can fail with the following error: "Computer
CPU Board ’xxxxxx’ is not running or has no remote shell (rsh) enabled". This is an
error and indicates that rsh to your machine xxxxxx does not work. You should
check this seperately and try again. If you are using ssh instead of rsh (by setting
the TDAQ_RSHELL_CMD environment variable to ssh), note that this test still uses
rsh exclusively, and will therefore likely fail.
Online Software Tutorial 47

Diagnostics Test
48 Online Software Tutorial

Chapter 5
On-line Monitoring

This part of the exercise explains how to develop an event sampler example in C++
and a monitoring task example in Java, using the Online Monitoring system
component of the ATLAS Online Software. This exercise is useful to anyone going
either to implement an event sampler application that is responsible for supplying
events to the event distribution sub-system or to develop a monitoring task that
reads event from the event distribution.

The On-line
Monitoring

system

The Online Monitoring system is responsible for the event transportation from
event samplers providing event fragment sources up to the users’ monitoring tasks.
The system consists of the following sub-systems:

• Event Sampling, which is responsible for sampling event data flowing through
the DAQ system and transportation of these events to the event distribution
sub-system, each event sampler with responsibility for one crate of the DAQ
system;

• User Monitoring task, which can request event fragments or full events with
particular characteristics from the event distribution sub-system using it’s
public API;

• Event Distribution, which has a scalable architecture in order to be able to
provide reasonable event transportation performance independently of the size
of the DAQ system itself and a number of monitoring task working
concurrently.

For more detailed information see User’s Guide for Online Monitoring:
http://atddoc.cern.ch/Atlas/Notes/157/mon-ug.html

Event Sampler The event sampler application is responsible for the communication with the data
flow sub-system. It’s implementation is specific for the different sub-detectors and
DAQ crate types (e.g. ROD, ROC, SFC). The monitoring package provides only a
skeleton class that defines an interface to the event distribution sub-system. A user
wishing to carry out event sampling on his hardware must overload the methods in
a “User” class which inherits from the Monitoring::EventSampler class. The user’s
Online Software Tutorial 49

On-line Monitoring
class that inherits from it is called MyEventSampler. Illustration 5.1 shows how to
declare it.

Monitoring Task The monitoring task has to be define from which part of the DAQ system the events
must be taken and identify certain event characteristics used to select events. In
other words, using the monitoring system’s terms and definitions, it is necessary to
specify the events’ Sampling Address and Selection Criteria. Illustration 5.2 shows
how to pass the Sampling Address and Selection Criteria to the event distribution

Illustration 5.1 MyEventSampler class declaration (C++)

class MyEventSampler: public Monitoring::EventSampler

{

public:

MyEventSampler(const IPCPartition & p, const char *

detector_id, const char * crate_id);

virtual Monitoring::Status startSampling (

const Monitoring::SamplingAddress & ,

const Monitoring::SelectionCriteria & ,

const Monitoring::SampleAll & ,

Monitoring::EventAccumulator *);

virtual Monitoring::Status stopSampling (

const Monitoring::SamplingAddress & ,

const Monitoring::SelectionCriteria &);

virtual void destroySampler ();

};
50 Online Software Tutorial

On-line Monitoring
and get back the Event Iterator’s reference using the select method of the
Monitoring class.

Illustration 5.2 Defining sampling address and selection criteria (Java)

SamplingAddress sa = new SamplingAddress();

SelectionCriteria sc = new SelectionCriteria();

try {

if (args.length > 0)

sa.sa_detector = args[0];

if (args.length > 1)

sa.sa_crate = args[1];

if (args.length > 2)

sa.sa_module = args[2];

if (args.length > 3)

sc.sc_detector_type = Integer.parseInt(args[3]);

if (args.length > 4)

sc.sc_trigger_type = Integer.parseInt(args[4]);

if (args.length > 5)

sc.sc_trigger_state = Integer.parseInt(args[5]);

if (args.length > 6)

sc.sc_status_word = Integer.parseInt(args[6]);

}

catch(NumberFormatException e){

System.err.println("ERROR:: Bad arguments ");

return;

}

Online Software Tutorial 51

On-line Monitoring
Once the address and criteria have been defined it is necessary to create the
MonitoringDistributor object and ask it to build the EventIterator for the these
address and criteria. Illustration 5.3 shows how to do this.

Illustration 5.3 Creating event iterator (Java)

Partition p;

if (args.length == 8)

p = new Partition(args[7]);

Monitoring.Distributor ed = new Monitoring.Distributor(p);

Monitoring.Iterator ei;

try{

ei = ed.select(sa, sc, false);

}

catch(Monitoring.BadAddress e){

System.err.println("ERROR:: Bad Address: detector " +

sa.sa_detector + ", crate " + sa.sa_crate + ", module " +

sa.sa_module);

return;

}

catch (Monitoring.BadCriteria e){

System.err.println("ERROR:: Bad Criteria: detector_type

" + sc.sc_detector_type + ", trigger_type " +

sc.sc_trigger_type + ", trigger_state " +

sc.sc_trigger_state + ", status_word " + sc.sc_status_word

);

return;

}

catch (Monitoring.NoResources e){

System.err.println("ERROR:: No resources");

return;

}

catch (Monitoring.NoDistributor e){

System.err.println("ERROR:: No distributor in partition

" + p.getName());

return;

}

52 Online Software Tutorial

On-line Monitoring
The instance of the EventIterator class that has been returned by the select method
can be used to access events. Illustration 5.4 shows how to do this.

Monitoring
exercise

The monitoring test exercise will help you to develop an event sampler example in
C++ which supplies events (from EventFragment.data data file, which you can find
it in the training/monitoring/data subdirectory) to the event distribution
sub-system and a monitoring task example in Java, that reads events from the event
distribution. The exercise will use the same databases (which you can find in
training/databases subdirectory) as all the other exercises do, and therefore the
same partition train_01.

In the training/monitoring/cpp subdirectory you have all the C++ files you need
to provide the executable file for the event sampler. In the
training/monitoring/java you will find the java file for monitoring task. The
solutions of the exercises are in the corresponding solution subdirectories.

You will build the executable for both event sampler and monitoring task . You will
modify the databases in order to start the event sampler application by DSA
supervisor (by means of play_daq script). The solutions for databases are in the
training/monitoring/databases/solution subdirectory. You will check the
functionality of the event sampler by using the Event Dump application. You will
execute the monitoring task to get the events.

Illustration 5.4 Getting events (Java)

// Getting 100 events

int i = 0;

while(i < 100){

int[] event;

try{

event = ei.try_next_event();

}

catch(Monitoring.NoMoreEvents e){

continue;

}

i++;

System.out.println("Event " + i + " received. Size is "

+ event.length + ".");

for (int j = 0; j < event.length; j++){

System.out.print(event[j] + " ");

}

System.out.println();

}

// If event iterator is not necessary anymore, destroy it.

ei.destroy();
Online Software Tutorial 53

On-line Monitoring
Modifying the
source files for
event sampler

All the needed files to provide the events sampler application you have it in the
training/monitoring/cpp subdirectory: My_event_sampler_impl.h,
My_event_sampler_main.cc and My_event_sampler_impl.cc. In the same
subdirectory are all the needed makefiles.

• Modify the source file My_event_sampler_main.cc to create the
instance of the MyEventSampler class.

Modifying the
source files for

monitoring task

The file needed to provide the monitoring task application, MonitoringTask.java, is
in the training/monitoring/java subdirectory.

• Modify the source file MonitoringTask.java to declare and
initialise the sampling address and selection citeria variables

• Modify the source file MonitoringTask.java to call the select
method of the MonitoringDistributor class

Building the
event sampler

You should have now all the source code necessary for building the event sampler
example application. Change to training/monitoring/cpp subdirectory. If you have
already installed the Online Software release and configured all the environment
variables you need to build training code against the release on your platform
(sourcing the training configuration script in the training directory), you can now
build the event sampler using the makefile provided in the package:

> make # compile and link the event sampler

As a result, you will have in the same directory the My_monitoring_sampler
executable file.

Building the
monitoring task

You should have now the source code necessary for building the monitoring task
example application. Change to training/monitoring/java subdirectory. If you
have already installed the Online Software release and configured all the
environment variables you need to build training code against the release on your
platform (sourcing the training configuration script in the training directory), you
can now build the monitoring task. First you have to check that the environment
variable CLASSPATH includes the path ${RELEASE_DIR}/share/lib/ipc.jar and
${RELEASE_DIR}/share/lib/Monitoring.jar, and add them if necessary.

> export
CLASSPATH=${RELEASE_DIR}/share/lib/ipc.jar:${RELEASE_DIR}/share/lib/Mon
itoring.jar:${CLASSPATH}

You can now build the executable file for monitoring task:

> javac MonitoringTask.java

As a result, you will have in the same directory the MonitoringTask.class file.

Modifying the
databases

The exercise uses the same databases (which you can find it in training/databases
subdirectory) as all the other exercises do, and therefore the same partition
train_01.

You have to modify the train_01.data.xml and train_01.sw.data.xml databases from
training/databases subdirectory, in order to start the event sampler application by
DSA Supervisor. If you have already installed the Online Software release and
54 Online Software Tutorial

On-line Monitoring
configured all the environment variables you need, you have to copy first these two
databases in a safe place, just in case. Perform the following steps:

• Using the confdb_gui, as has been explained in other chapters
of this document, define first in the train_01.sw.data.xml
database your event sampler executable file as a new object of
the class Program. Then create the corresponding object of the
SoftwareObject class and create the relationship between them;

• Using the confdb_gui, define in the train_01.data.xml database
a new object of the Application class calling it the
event_sampler for example. It must has relationship with the
respective instance of the SoftwareObject class;

• Define also the following attributes of the Application object:

1.“Parameters” - the command line parameters for the event
sampler: “-p train_01 -d Detector_01 -c ROCCrate01 -S 1024
-N 1 -D 100000 -F
${MY_PATH}/monitoring/data/EventFragment.data” (that
means your application will simulate event sampling for
the crate ROCCrate01 of the detector Detector_01),

2.“InitTimeout” (which should be 0),

3.“Creation Type” (which should be in our case Supervised),

4.“Runs on” (your workstation),

5.“Shutdown depends from” (the controller provided in the
controller exercise) for this object.

• Select the Application class which you have just created for the
Monitoring sampler with the right mouse button and select
"Copy reference" on the menu which pops up. Right click on
the partition and select "Link to ..." on the menu. Then select the
option "Append to relationship ’Contains’". This will link the
application to the partition and means that it will be run when
the partition is started.

Testing the
monitoring

exercise

You can check now the event sampler and monitoring task are working.

Open a window and if you have already set up the Online Software release and
configured all the environment variables you need, proceed the same as you did for
testing the controller exercise: boot, load, configure and start the train_01 partition.
If everything is OK you should be able to check the functionality of the controller as
it is mentioned in the controller exercise. Besides, in the PMG panel of the IGUI,
when you select the PMG agent you should see your event sampler in the panel as
a running process.

When the partition is in the Running state, select the "Event Dump" button at the
bottom of the IGUI window. In the Event Dupmp window select “Event Selection”.
When another window appears select the partition, detector, crate and type
’Module_01’ in the module field. Then select the "Dump" button at the bottom of
that window. You will see the event dump of one event in the window. On the left
hand side the event is broken down into a tree structure of subdetectors, ROCs,
ROBs, and RODs. On the right hand side you can see the raw data of the event. In
Online Software Tutorial 55

On-line Monitoring
the Monitor panel of the IGUI you will see the statistics for the event sampler,
which proves it has sampled one event and passed it on to the event dump.

Open another window, setup the Online Software release and configure all the
environment variables you need using.training.sh script, check the environment
variable CLASSPATH includes the path for the ${RELEASE_DIR}/share/lib/ipc.jar
and for the ${RELEASE_DIR}/share/lib/Monitoring.jar, and add them if necessary

>export
CLASSPATH=${RELEASE_DIR}/share/lib/ipc.jar:${RELEASE_DIR}/share/lib/Mon
itoring.jar:${CLASSPATH}

Start your monitoring task application using the command:

>java -Dipc.ref.file=$IPC_REF_FILE MonitoringTask Detector_01
ROCCrate01 Module_01 1 0 0 0 train_01

You should see the 100 events printed out.
56 Online Software Tutorial

Chapter 6
Online Histogramming

This part of the exercise explains how to use the Online Histogramming subsystem.
You will learn how to write a histogram provider and a histogram display using
C++.

The Online
Histogramming

subsystem

The Online Histogramming (later refered to as OH) subsystem is one of the
components of the ATLAS Online Software. The OH is a framework for histogram
transportation in the distributed environment. It is responsible for the
communication between two types of user applications: Histogram Providers (later
refered to as HP) and User Histogram Task (later refered to as UHT).

Histogram
Provider

A Histogram Provider is an application which may use one of the histogram filling
frameworks like ROOT (An Object-Oriented Data Analysis Framework), AIDA
(Abstract Interface for Data Analysis), HTL (histogramming Template Library), or
any other means of building histograms. The HP Interface also supports export of
histograms to the OH from a user defined format.

HP could be a user monitoring or analysis task, or a task providing histograms.
When the histogram is ready the HP can make it publicly available by publishing it
in the Online Histogramming system. The OH assigns a unique identifier to this
histogram.

Illustration 6.1 Communication between Histogram Providers and User Histogram Task

UHT HP

Select/Request

Transport

JAS,
ROOT,
. . .

AIDA,
HTL,
. . .

User defined format

ROOT
Online Software Tutorial 57

Online Histogramming
User
Histogramming

Tasks

A User Histogramming Task can access any histogram in the Online Histgramming
system using an unique identifier. It is possible to enumerate all the histograms
available in the OH system.

OH Interfaces Histogram Provider - sends histograms to the OH assigning a name to it;

Histogram Receiver - gets an histogram by name from the OH;

Histogram Subscriber - is notified when an histogram appears in the OH;

Histogram Iterator - enumerates all the histograms in the OH;

Server Iterator - enumerates all the existing OH servers;

Provider Iterator - enumerates all the active Histogram Providers.

Online
Histogramming

Web Page

The Online Histogramming Web Page contains references to the Requirements,
User’s and Developer’s guide documents:

http://atddoc.cern.ch/Atlas/DaqSoft/components/histogramming/Welcome.html

OH examples OH examples show how to use the OH. In the training we have two examples:

• raw_provider - shows how to write an histogram provider that exports
histograms represented by arrays of some fundamental data type to the OH

• root_display - shows how to implement an application that imports histograms
from the OH.

Accessing the
source code

The source code of the OH examples is held in the histogramming directory. All
necessary files are in two subdirectories:

raw_provider/

Illustration 6.2 Diagram of the Online Histogramming subsystem

Online Histogramming

User Histogramming
Tasks

Histogram
Provider

Histogram

Distribution

UHT
Interface

HP
Interface

Trigger/DAQ
<<system>>
58 Online Software Tutorial

Online Histogramming
 raw_provider/

raw_provider.cxx - a RAW provider example

Makefile - makefile to compile and link the example
provider

root_display/

root_display.cxx - a simple utility which display
histograms published in the OH using the ROOT
framework

Makefile - makefile to compile and link the example
display

raw_provider To view and modify the raw_provider’s source code, open the raw_provider.cxx
with your favourite text editor (e.g. nedit). This is shown on illustration 6.3.

We use a template class which provides the functionality to export histograms
represented by arrays of some fundamental data type to the OH

template<class TContent, class TError, class TAxis, class TMap =
OHRawProviderDM> class OHRawProvider< TContent, TError, TAxis,
TMap >

The meaning of the template parameters are as follows:

• TContent: The data type used by user to represent bin contents (heights).

• TError: The data type used by user to represent bin errors.

• TAxis: The data type used by user to represent axis partitions.

• TMap: Governs how the user bins are accessed
Online Software Tutorial 59

Online Histogramming
To publish a sample 1D histogram we use the publish method ofOHRawProvider
template class:

publish(const string & name,// Name describing the histogram

const string & title,// The histogram title

const string & label,// X Axis label

long bincount,// The number of bins excluding underflow and

Illustration 6.3 Create an OHRawProvider and publish histograms

//
//Create an OHRawProvider and publish some sample histograms //
///

IPCPartition p(partition_name);

//Here we choose the source format of the histogram data with
//the template arguments. Lets pretend we have 16-bit bin heights
// with 8-bit errors and floating point axes.

OHRawProvider<short,char,float> raw(p,(const char*)server_name,

(const char*)provider_name);

if (! raw) {

cout << "The OH RAW provider was not successfully created,"
<< endl << "invalid arguments?" << endl;

return 0;

}

// A sample annotation which stores the origin of the histograms

vector<string> labels, values;

labels.push_back("Source");

values.push_back("OH RAW Provider example application");

// Sample data, this should be retrieved from somewhere in a real
// app

short contents[11] = { 100,20,3,40,5,10,100,200,300,400,500};

char errors[11] = { 1,2,3,1,1,4,1,1,4,1,1};

float axis[11] = { 1,2,4,8,10,16,18,20,34,35,37};

// Publish a sample 1D histogram with variable width bins ,
//errors, underflow and overflow

raw.publish((const char*)histogram_name, "RAW Histogram 1D",
"X Axis", 7, axis, contents, errors, true, labels, values);

// Insert your code to publish a sample 2D histogram with
//variable width bins and errors here:

//...

}

60 Online Software Tutorial

Online Histogramming
//overflow

TAxis * axis,// A pointer to the axis partition (bincount + 1
//values)

TContent * contents,// A pointer to the position where the bin
//contents (heights) are located

TError * errors,// A pointer to the position where the bin
//errors are located or 0 if no errors

bool outOfRangeBins,// Out of range bins or not

const vector<string> & labels,// Labels for any annotations
//that should be attached to the histogram

const vector<string> & values)// Values for any annotations
//that should be attached to the histogram

To publish a sample 2D histogram the publish method of OHRawProvider
template class should be used:

publish(const string & name,// Name describing the histogram

const string & title,// The histogram title

const string & label,// X Axis label

long xcount,// The number of bins along the x axis, excluding
//underflow and overflow

TAxis * xaxis,// A pointer to the x axis partition (xcount + 1
//values)

const string & ylabel,// Y Axis label

long ycount,// The number of bins along the y axis, excluding
//underflow and overflow

TAxis * yaxis,// A pointer to the y axis partition (ycount + 1
//values)

TContent * contents,// A pointer to the position where the bin
//contents (heights)are located

TError * errors,// A pointer to the position where the bin
//errors are located or 0 if no errors

bool outOfRangeBins,// Out of range bins or not

const vector<string> & labels,// Labels for any annotations
//that should be attached to the
histogram

const vector<string> & values)// Values for any annotations
//that should be attached to the histogram

• Modify the source code to publish 2D sample histogram.

How to build the
raw_provider

You should be in the raw_provider subdirectory. You can now build that provider
using given Makefiles:

> make # compile and link the raw_provider

root_display To view and modify root_display’s source code, open the root_display.cxx with
your favourite text editor (e.g. nedit). It is shown on illustration 6.4.
Online Software Tutorial 61

Online Histogramming
• Modify the source code to display histograms published in the
OH.

Fill the blank space in the program code in the following way:

• The first thing that should be done, is to create a new
OHHistogramIterator with name “it”. The constructor takes
parameters as shown below :

OHHistogramIterator::OHHistogramIterator (IPCPartition & p,

const string & server,

const string & provider = ".*",

const string & histoname = ".*",

long year = ANY_YEAR,

long month = ANY_MONTH,

long day = ANY_DAY,

long hour = ANY_HOUR,

long minute = ANY_MINUTE,

long second = ANY_SECOND

)

Parameters:

 p - a valid IPCPartition

server - name of a valid OH server

provider - optional name of histogram provider, should only contain [a-z],
[A-Z], [0-9], ’_’ and optional wildcars according to the egrep- style
of regular expressions (see manual pages for egrep comand “ > man
egrep”)

histoname - optional name of histogram, should only contain [a-z], [A-Z],
[0-9], ’_’ and optional wildcars according to the egrep- style of
regular expressions (see manual pages for egrep comand “ > man
egrep”)

year - optional year when the histogram was published

month - optional month when the histogram was published (JAN-DEC)

day - optional day when the histogram was published (1-31)

hour - optional hour when the histogram was published (0-23)

minute - optional minute when the histogram was published (0-59)

second - optional second when the histogram was published (0-59)

The iterator is a part of the mechanism that allows access to all histograms matching a
given criteria (i. e. server name, provider name etc.)

The Iterator should be created with the following data: the partition, server name,
provider name and histogram name.
62 Online Software Tutorial

Online Histogramming
• As a next step check for the success of iterator creation (the
boolean conversion is defined).

• Modify the source code by adding a loop over the histograms in
the iterator. For each histogram display: name, provider, timeof
creation and show histograms using retrieve() method :

bool OHHistogramIterator::retrieve (OHHistogramReceiver & receiver)

Retrieve current histogram.

Parameters:

receiver - should be a user defined histogram receiver object derived
from one of the OH receiver classes - in our example we use
MyReceiver class for that: class MyReceiver : public OHRootReceiver. The
constructor is MyReceiver : (bool is_draw) : draw_(is_draw) { ; }

Returns: true if the histogam was successfully received by the user,
false if a communication error or other OH internal error occurs .

bool OHHistogramIterator::operator++ ()

Advance the iterator one position.

Returns: true if new position is valid, otherwise false

Use the operator++ to get the next histograms.

If positioned at end false is returned by this operator.

string OHHistogramIterator::name () const

Retrieve name of the current histogram.

Returns: the name of the histogram on the current position or "" if the
current position is undefined.

string OHHistogramIterator::provider() const

Retrieve name of provider who published the current histogram.

Returns: the name of the provider who published the histogram on the
current position or "" if the current position is undefined.

OWLTime OHHistogramIterator::time () const

Retrieve time when the histogram was published.

Returns: the time when the histogram (set) on the current position was
published or OWLTime() if the current position is undefined

• Print the success/failure info of each display operation.
Online Software Tutorial 63

Online Histogramming
The number of histograms in the iterator should be stored in the “count”
variable. This variable is used later to recognise a situation when the iterator
contains no histograms.

How to build the
root_display

Define ROOTSYS variable in your environment :

> export
ROOTSYS=/afs/cern.ch/sw/root/v3.03.09/rh72_gcc2953/root

root_disply.cxx (fragments)

Illustration 6.4 Create an OHHistogramIterator object and retrieve all histogram

//
//Create an OHHistogramIterator object and retrieve all histogram
//with the specified characteristics from the specified server
//

 MyReceiver receiver(graphics);

 IPCPartition p(partition_name);

//insert your code to create a OHHistogramIterator here:

//...

//check for the success of the OHHistogramIterator creation here:

//...

 long count = 0;

//insert your code thet displays basic information about histograms
//in the OHHistogramIterator here:

//...

 if (count > 0)

 {

cout << "No more histograms available..." << endl;

 }

 else

 {

cout << "No histograms found..." << endl;

 }

 if (count > 0 && graphics)

 {

 cout << "Entering ROOT message loop..." << endl

 << "Click ’Quit ROOT’ on the file menu to quit"

 << endl;

 gSystem -> Run();

 }

}

64 Online Software Tutorial

Online Histogramming
You should be in root_display subdirectory. You can now build the root_display
using the Makefile provided:

> make # compile and link the root_display

Testing the
raw_provider and

root_display

When your raw_provider and root_display compile and link correctly you can
publish histograms. The following steps must be done:

• start anIPC partition with your partition name (e. g.
mypartition):

> ipc_server -p partition_name &

• start an IS (OH) server on your partition with your server_name
(e. g. myserver):

> is_server -p partition_name -n server_name &

Currently the OH server is equivalent to the IS server

• Change directory to the raw_provider subdirectory. You can
now publish your 1D and 2D histograms on your IS server
using raw_provider:

> raw_provider -p partition_name -s server_name -n
provider_name -h histogram_name

(e. g. raw_provider -p myparition -s myserver -n myprovider -h
myhisto)

• Add $ROOTSYS/lib path to the LD_LIBRARY_PATH
environment variable.

• Change directory to the root_display subdirectory. With
root_display you can now display your histograms published
in the OH (IS) server using the ROOT framework:

to display all histograms on a given server (e. g. myserver) in a given
partition (e. g. myparition) use:

> root_display -p partition_name -s server_name

to display all histograms on a given server (e. g. myserver) in a given
partition (e. g. myparition) which have been published by a specified
provider named (e. g. myprovider) use:

> root_display -p partition_name -s server_name -n
provider_name

to display all histograms on a given server (e. g. myserver) in a given
partition (e. g. mypartition) which have been published by a specified
provider named (e. g. myprovider) with histogram type name (e. g.
myhisto) use:

> root_display -p partition_name -s server_name -n
provider_name -h histogram_name

to display histograms in graphics mode you must add - g options e. g. :
Online Software Tutorial 65

Online Histogramming
> root_display -p partition_name -s server_name -n
provider_name -h histogram_name -g

The pictures below present the results of the commands presented above.

Illustration 6.5 results of root_display usage

bash: 0.0.16>root_display -p mypartition -s myserver -n myprovider
-h myhisto
Retreiving histogram myhisto created by myprovider at 5/3/02 10:22:53...
TH1.Print Name= Histogram1D_0, Entries= 0, Total sum= 378
fSumw[0]=100, x=-0.357143, error=1
fSumw[1]=20, x=1.5, error=2
fSumw[2]=3, x=3, error=3
fSumw[3]=40, x=6, error=1
fSumw[4]=5, x=9, error=1
fSumw[5]=10, x=13, error=4
fSumw[6]=100, x=17, error=1
fSumw[7]=200, x=19, error=1
fSumw[8]=300, x=21.3571, error=4
[OK]
Retreiving histogram myhisto created by myprovider at 5/3/02 10:22:53...
TH1.Print Name= Histogram2D_0, Entries= 0, Total sum= 778
fSumw[0][0]=0, x=-0.166667, y=-0.166667, error=0
fSumw[1][0]=0, x=1.5, y=-0.166667, error=0
fSumw[2][0]=0, x=3, y=-0.166667, error=0
fSumw[3][0]=0, x=6, y=-0.166667, error=0
fSumw[4][0]=0, x=9.16667, y=-0.166667, error=0
fSumw[0][1]=0, x=-0.166667, y=1.5, error=0
fSumw[1][1]=100, x=1.5, y=1.5, error=1
fSumw[2][1]=20, x=3, y=1.5, error=2
fSumw[3][1]=3, x=6, y=1.5, error=3
fSumw[4][1]=0, x=9.16667, y=1.5, error=0
fSumw[0][2]=0, x=-0.166667, y=3, error=0
fSumw[1][2]=40, x=1.5, y=3, error=1
fSumw[2][2]=5, x=3, y=3, error=1
fSumw[3][2]=10, x=6, y=3, error=4
fSumw[4][2]=0, x=9.16667, y=3, error=0
fSumw[0][3]=0, x=-0.166667, y=6, error=0
fSumw[1][3]=100, x=1.5, y=6, error=1
fSumw[2][3]=200, x=3, y=6, error=1
fSumw[3][3]=300, x=6, y=6, error=4
fSumw[4][3]=0, x=9.16667, y=6, error=0
fSumw[0][4]=0, x=-0.166667, y=9.16667, error=0
fSumw[1][4]=0, x=1.5, y=9.16667, error=0
fSumw[2][4]=0, x=3, y=9.16667, error=0
fSumw[3][4]=0, x=6, y=9.16667, error=0
fSumw[4][4]=0, x=9.16667, y=9.16667,
error=0
[OK]
No more histograms available...
66 Online Software Tutorial

Online Histogramming
Illustration 6.6 results of graphics mode root_disply usage
Online Software Tutorial 67

Online Histogramming
68 Online Software Tutorial

Chapter 7
Resource Manager

This chapter of the exercises is dedicated to the usage of the Resource Manager. You
will learn how to ask for resources, use resources and free them again using the
Resource Manager Library in C++.

The Resource
Manager

On large machines such as for example the ATLAS detector there are a lot of
resources such as controllers, data-taking machines, graphical user interfaces and
so forth which are useful for many purposes. It might happen quite often that more
people or applications want to use a special device than this device can handle. (For
example the controlling application of a specific part of a detector. Two people
trying that at the same time might cause problems.) So the available resources have
to be organized in such a way that the systems can work without any problems.

The Resource Manager is created for this task and allows an easy handling of
various resources.

How does the
Resource

Manager work?

The Resource Manager (see Illustration 7.1) is divided into a client and a server
part. The server covers all the necessary classes concerning the resource
management. The dynamic database which handles resources and their various
states is part of it and hidden in an internal class used by the Resource Manager
Server.

The client class allows applications to ask for resources, to handle them and to free
them again.

Illustration 7.1 The dialog for building a Software Resource
Online Software Tutorial 69

Resource Manager
Shared and exclusive resources which have to be set up in the configuration
databases are loaded into the dynamic database. Once this is done applications can
use the Resource Manager Library to ask for resources. If they are granted the
application gets back a so called token which is connected to the given resources
and the application can use these tokens to communicate with and control the
allocated resources. When the resource is not needed anymore the application can
(and should of course) free the resource for the use of others again.

How many tokens can be used at once for a specific resource depends on the
resource itself.

Applications may also load and unload partition resources into or from the
dynamic database and ask for information about different tokens and resource
states.

Usage of the
Resource
Manager

As already mentioned the Resource Manager consists of a C++ library. It is part of
the Online Software and its header file can be found in the Online software package
under

$TDAQ_INST_PATH/include/rm/RM_Client.h

New classes are introduced of which some will be used during this chapter:

These classes and their methods can be used to handle resources which will be
explained in more detail later. For information beyond this training one can consult
the documentation of the resource manager available via

http://atddoc.cern.ch/Atlas/DaqSoft/components/resmgr/Welcome.html

Class Functionality

TokenID Contains the token number for various
allocated resources.

AVAILABILITY An enum object allowing the use of the
states AVAILABLE, LOCKED, NOT-
FOUND.

strTokenstatus Contains the information if the operation
was successful or not and if not what
may be the reason. It returns one of the
following strings: SUCCESS, UNSUC-
CESS, FREE, ALLOCATED or INUSE.

RMERROR Used by some methods to give more
detailed information about what hap-
pened during an operation.

RMInfo Offers the possibility to interpret the
information of various other methods in
a convenient way.

RM_Client Allows the handling of resources and
tokens.

Table 7.1 Classes in the RM_Client library
70 Online Software Tutorial

Resource Manager
Adding
Resources to the

database

As mentioned before resources have to be added to the databases to use them.
Additionally one needs to create a Software Object that owns those resources as
well as an application to which this object is linked and a program that is the
implementation of the application. Finally the application must be linked to the
partition so that the resources become part of the partition. To do all this the
following steps are necessary.

One should modify the database for the partition train_01 via the command

> confdb_edit_data.sh -d train_01.data.xml

when being in the directory databases. A window showing the schema files, the
database files and the list of possible objects is opened. In this window one should
set the train_01.sw.data.xml file to the active state. This makes sure that all changes
are put into that file and not others.

The next step is to introduce resources in the database. This can be done by
scrolling down the lowest part of the window until one can see the SW_Resource
row. Activate it via a leftclick and build a new object via the menu that appears
after a rightclick. Use the attributes given in illustration 7.1. Then build a second
SW_Resource where every 1 is exchanged by a 2. (This includes the name and the
ID as well as the number of available copies.) In the following the ID must always
be the same as the Name is. So when in this subsection names for objects are given
one should also use them for the ID’s.

Now one must make a new SW_Object called RM_Training_SW_Object and link
to the NeedsShared list of this SW_Object the two resources one just created. To
put the two resources just created in the NeedsShared list keep this window open.
Go back to the main window. Double click on the SW_Resource category, and a

Illustration 7.2 The dialog for building a Software Resource
Online Software Tutorial 71

Resource Manager
window with both resources will appear. Right click and choose select on the menu.
Go back to the SW_Object window and right click in the field NeedsShared and
select the share item on the menu. Repeat for the other SW_Object.

One also needs an object of the Program class. It ought to be called
RM_Training_Program, enter in the dialog for the executable file the line
${MY_PATH}/resources/RM (this is the application that has to be written during
this chapter) and establish a link from the SW_Object one just built to this
Program. When this is done one additionally needs to make a link of the Program
to the ImplementedBy list of the SW_Object.

The next step is to create the Application object called RM_Training_Application.
The CreationType should be set to Default and two links must be set. One links the
RM_Training_SW_Object to the SW_Object dialog and the other one is a link to
MyWorkstation for the RunsOn list of the Application. The InitTimeout variable
has to be set to 0.

Finally the Application must be linked to the partition train_01 in the Contains list.

This completes the necessary steps to introduce resources to a partition.

Usage of the C++
library

During this chapter several methods to allocate resources and to get information
are used. These are

RMInfo* RM_Client::GetPartitionAllResInfo(const char* partition, RMERROR
*errpub)

Gets information about all resources of the Partition partition stored in the
dynamic database.

AVAILIABILITY RM_Client::GetPartitionStatus(const char* partition, RMERROR
*errpub)

Returns the information if partition is either AVAILABLE, LOCKED or
NOTFOUND.

Tokenstatus RM_Client::LockPartition(const char* partition, RMERROR *errpub)

Locks partition so that all resources of that Partition become unavailable.

Tokenstatus RM_Client::UnLockPartition(const char* partition, RMERROR
*errpub)

Unocks partition so that all resources of that Partition can be used when allocated.

TokenID RM_Client::AskApplicationResources(const char* partition,const char*
application, RMERROR *errpub, const char* clientname)
72 Online Software Tutorial

Resource Manager
Asks for all the resources linked with application in partition partition. clientname
is optional and can be used for further identification. (e.g. one can free all resources
of a client at once.) Returns token number if successful.

Tokenstatus RM_Client::CheckAllocated(const TokenID tid)

Checks if token with token number tid is allocated. Returns SUCCESS if it is
allocated and UNSUCCESS if otherwise.

Tokenstatus RM_Client::CheckCompleteValidity(const TokenID tid,const char*
application)

Checks if token with token number tid is allocated for the application application.
Returns SUCCESS if it is allocated and UNSUCCESS if otherwise.

TokenID RM_Client::AskResourcesDirectly(const char* partition,const char*
application,const char* rnlist, RMERROR *errpub, const char* clientname)

Asks for resources given in rnlist linked with application in partition partition. It
returns token number if successful.

Tokenstatus RM_Client::FreeAllPartitionResource(const char* partition,
RMERROR *errpub)

Frees all resources in partiton partition. Returns SUCCESS or UNSUCCESS
depending on the result of the freeing.

RMInfo* RM_Client::GetOneTokenInfo(TokenID tid, RMERROR *errpub)

Gets information about all resources allocated with tid.

Tokenstatus RM_Client::FreeResourcesByToken(TokenID tid, RMERROR
*errpub)

Frees all resources allocated with tid.

What does the
application do?

The application one should implement does the following:

First the partition train_01 is locked, checked, unlocked and checked again. Then all
the resources in RM_Training_Application are allocated and two checks are run.
One simply checks, if the token with number tid is allocated and the second check
additionally check if this also belongs to the application RM_Training_Application.
Next information of just one resource is presented and once again the program tries
to allocate all the resources of RM_Training_Application. This should fail since
Online Software Tutorial 73

Resource Manager
RM_Training_SW_Resource1 may only be allocated once. The trial to allocate only
the RM_Training_SW_Resource2 a second time succeeds whereas the third trial
fails again. Then all resources of the partition train_01 are freed again. The second
part of the application allocates just one resource and information about the token
74 Online Software Tutorial

Resource Manager
under which it was allocated is presented and every resource being part of this
token is freed again.

RM.cxx (fragments)
Illustration 7.3 Create an OHRawProvider and publish histograms

// Defining names for the application, resources and the
partition

 application=(char *) "RM_Training_Application";

 rnlist=(char *) "RM_Training_SW_Resource1";

 rnlist2=(char *) "RM_Training_SW_Resource2";

 dummy=(char *) "";

 const char* p="train_01";

cout << "Getting information from train_01" << endl;

 errpub = new RMERROR;

 tmpinfo = RMC.GetPartitionAllResInfo(p,errpub);

 tmpinfo->Info_res_table();

 delete errpub;

 cout << "Checking availibility of train_01" << endl;

 errpub = new RMERROR;

 avail=RMC.GetPartitionStatus(p,errpub);

 if (avail==AVAILABLE)

 tmpString="AVAILABLE";

 else if (avail==LOCKED)

 tmpString="LOCKED";

 else

 tmpString="NOTFOUND";

 cout << "Partiton status is "<< tmpString << endl;

 delete errpub;

 cout << "Trying to lock partition train_01" << endl;

// Enter your code for locking partition train_01 here

//........//

tid = RMC.AskApplicationResources(p,application,errpub);

 cout << "TokenID of AskApplicationResources = "<< tid <<
endl;
Online Software Tutorial 75

Resource Manager
H
a
rd

w
a
re

A
n
d
D

e
te

c
to

rP
a
ra

m
e
te

rs
 o

n
 3

/1
1
/2

0
0
2

D
e

te
c
to

r

C
ra

te
M

o
d

u
le

C
o

m
p

u
te

r

W
o

rk
s
ta

ti
o

n

IO
M

IO
_

D
e

v
ic

e

IO
_

C
P

U
C

P
U

_
B

o
a

rd

P
a

rt
it
io

n

P
a

ra
m

e
te

r

N
a

m
e

 :

 s
tr

in
g

V
a

lu
e

 :

 s
tr

in
g

N
a

m
e

 :

 s
tr

in
g

O
s
T

y
p

e

 :
 e

n
u

m
,l
in

u
x
,l
y
n

x
,s

o
la

ri
s
,h

p
u

x
,w

n
t

=
 l
in

u
x

N
a

m
e

 :

 s
tr

in
g

T
y
p

e

 :
 s

tr
in

g

R
e

p
o

s
it
o

ry
R

o
o

t

 :
 s

tr
in

g
 =

 $
{S

R
T

_
IN

S
T

}

N
a

m
e

 :

 s
tr

in
g

 =
 U

n
k
n

o
w

n
 M

o
d

u
le

L
o

g
ic

a
lI
d

 :

 u
n

s
ig

n
e

d
 l
o

n
g

 =
 0

P
o

s
it
io

n

 :
 u

n
s
ig

n
e

d
 s

h
o

rt
 (

ra
n

g
e

=
0

..
3

1
)

=
 0

W
id

th

 :
 u

n
s
ig

n
e

d
 s

h
o

rt
 =

 1
P

h
y
s
A

d
d

re
s
s

 :

 u
n

s
ig

n
e

d
 l
o

n
g

 (
fo

rm
a

t=
h

e
x
)

=
 0

C
o

m
m

A
d

d
re

s
s

 :

 u
n

s
ig

n
e

d
 l
o

n
g

 (
fo

rm
a

t=
h

e
x
)

S
ta

te

 :
 e

n
u

m
,e

n
a

b
le

d
,d

is
a

b
le

d
 =

 e
n

a
b

le
d

N
a

m
e

 :

 s
tr

in
g

 =
 U

n
k
n

o
w

n
 C

ra
te

L
o

g
ic

a
lI
d

 :

 u
n

s
ig

n
e

d
 l
o

n
g

 =
 0

N
u

m
b

e
rO

fS
lo

ts

 :
 u

n
s
ig

n
e

d
 s

h
o

rt

N
a

m
e

 :

 s
tr

in
g

L
o

g
ic

a
lI
d

 :

 u
n

s
ig

n
e

d
 l
o

n
g

 =
 0

N
e

tw
o

rk
C

o
n

fi
g

u
ra

ti
o

n

N
a

m
e

 :

 s
tr

in
g

 =
 N

o
n

a
m

e

S
u

b
S

y
s
te

m

S
u

b
S

y
s
te

m
It

e
m

N
a

m
e

 :

 s
tr

in
g

L
o

g
ic

a
lI
d

 :

 u
n

s
ig

n
e

d
 l
o

n
g

 =
 0

S
ta

te

 :
 b

o
o

l
=

 t
ru

e

N
o

te
,

th
a

t
c
ra

te
 L

o
g

ic
a

lI
d

to
 b

e
 r

e
p

la
c
e

d
 b

y
 t

h
e

S
u

b
S

y
s
te

m
 L

o
g

ic
a

lI
d

N
o

te
,

th
a

t
m

o
d

u
le

 L
o

g
ic

a
lI
d

to
 b

e
 r

e
p

la
c
e

d
 b

y
 t

h
e

S
u

b
S

y
s
te

m
It

e
m

 L
o

g
ic

a
lI
d

R
u

n
C

o
n

tr
o

lA
p

p
lic

a
ti
o

n

N
a

m
e

 :

 s
tr

in
g

L
o

g
ic

a
lI
d

 :

 u
n

s
ig

n
e

d
 l
o

n
g

 =
 0

A
p

p
C

la
s
s
e

s

 :
 l
is

t_
o

f_
s
tr

in
g

S
u

b
S

y
s
te

m
M

o
d

u
le

S
u

b
S

y
s
te

m
W

o
rk

s
ta

ti
o

n

C
o

n
s
is

ts
O

f Is
P

a
rt

O
f

C
o

n
ta

in
s

B
e

lo
n

g
s
T

o

C
o

n
ta

in
s

Is
P

a
rt

O
f

H
a

s
IO

_
D

e
v
ic

e
s

H
a

s
C

P
U

Is
P

a
rt

O
f

H
a

s
C

P
U

Is
P

a
rt

O
f

U
s
e

s
D

e
te

c
to

rs

U
s
e

s
C

ra
te

s

H
a

s
P

a
ra

m
e

te
rs

H
a

s
P

a
ra

m
e

te
rs

Is
P

a
rt

O
f

H
a

s
N

e
tw

o
rk

C
o

n
fi
g

u
ra

ti
o

n

C
o

n
ta

in
s

B
e

lo
n

g
s
T

o

U
s
e

s
S

u
b

S
y
s
te

m
s

M
o

d
u

le

W
o

rk
s
ta

ti
o

n

Is
C

o
n

tr
o

lle
d

B
y

1
+

1
+

Accessing and
modifying the

source code

The C++ source code for this chapter can be found in the resource subdirectory and
is named RM.cxx. One can use his or her favourite editor to modify the source code
76 Online Software Tutorial

Resource Manager
in order to succeed in the following tasks.

• Lock partition train_01 in the given section of the source code

• Ask for all resources that are linked to the application
RM_Training_Application (one should use tid for the TokenID in order to
keep the rest of program functional)

• Check if the token with TokenID tid is allocated and belongs to the
Application RM_Training_Application.

• Free all resource that belong to the partition train_01.

• Get information about the resources that are allocated with the TokenID
tid.

• Free resources that are allocated with the TokenID tid.

Compiling and
testing of the

application

When the modification are done one can compile the source when being in the
resource directory code with the command

> make

In order to test RM file one needs to run

> play_daq train_01 no_obk &

When the IGUI is in the running state one can run the test application via

> RM

when in directory resources. It should print out information to the console.
Online Software Tutorial 77

Resource Manager
Illustration 7.4 Setup for the Hardware Database
78 Online Software Tutorial

Resource Manager
Hardware
Resources

Apart from Software Resources (all the resources up to now were Software
Resources) there is also the possibility to use so called Hardware Resources.
Software Resources are abstract entities. An application using a Software Resource
can run anywhere and is not necessarily aware of which machine it runs on. The
Software Resource only defines how often it can run in one partition or in general
but not on which machines that are part of the partition.

Sometimes it is necessary to really know which device is used. One might want to
us a specific crate or a specific detector that is part of the partition which is
described in the databases. Due to the fact that one wants to describe a specific
device a more precise configuration is necessary. One must describe the exact
relationships starting from the Computer (Illustration 7.4) to the specific device that
is meant to be a Hardware Resource in the database.

Introducing
Hardware

Resources in the
Database

• Introduce a Hardware Resource related to the Read-out Create of the
partition train_01 in the database.

This means that on all the machines that are part of the Read-out Crate the
application may only run as often as allowed in the Hardware Resource
specification.

To introduce the Hardware Resource one needs to use the confdb_edit_data.sh
program to modify the database. The fist step is to change the RunsOn Parameter
of the Application RM_Training_Application to the VirtualCPU which is set up in
the database. This virtual CPU is the same machine as MyWorkstation but the
virtual CPU is also part of the partition (which is necessary for handling the exact
relationships). A Hardware Resource object named
RM_Training_HW_Resource_Crate must be created. The Hardware Class is ROC
for a Read-out crate. The DB_Path describes the relationship of the Hardware
Resource to the Computer on which the application is running. Looking at
Illustration 7.4 one sees that the relationship starting from the computer to the crate
is IsPartOf.IsPartOf, since the CPU_Board (which is a Computer) is part of the
Module and the Module is part of the Crate.

Usage of
Hardware

Resources

The objects and methods i.e. the whole usage of allocating, using and freeing
Hardware Resources are the same as for Software Resources. The RM application
that has been made is still usable and allocates the Hardware Resource as well. By
running it you will see that there is only one slight change. The name of the
Hardware Resource is not the name itself but the name plus the sign “@” followed
by the name of the crate. In this case it means that the name of the Hardware
Resource is RM_Training_HW_Resource_Crate@ROCCrate01.

The rm_gui Apart from having to write a test application of one’s own there is another option to
get to know the behaviour of resources, tokens, applications and their relationships.
After having started the partition and the resource manager itself by hand or via
the play_daq command simply use

> rm_gui

to start the resource manager gui. It is a front-end for some of the possible
commands concerning resources. It is easy to use and allows for experimenting
with tokens, resources and available information. It is strongly advised to use it
until one feels comfortable with the concepts used by the resource manager.
Online Software Tutorial 79

Resource Manager
80 Online Software Tutorial

	Introduction
	What is this document about?
	What is the Online Software?
	Crate controller
	GUI panel
	On-Line Monitoring
	Online Histogramming
	Test development and diagnostics
	Resource Manager
	Installation of Online SW release
	Installation of Training package
	Training Documentation
	Source Code
	Solutions
	Example configuration
	Setting up the example database
	Verify database contents
	More examples and documentation
	Some good advice

	Crate Controller
	The run-control system
	Controller
	Controller state machine
	Usings Threads In The Controller
	ROC crate controller example
	rc_interface class
	Accessing the source code
	Setting the screen colour
	Sending MRS messages
	Publishing IS information
	Modify the database
	Retrieving information from the Configuration Database
	How to build the controller
	How to test the controller
	Checking IS information
	Exercise to add an ILU thread in the crate controller
	Thread declaration and initialisation
	Thread implementation
	How to build the controler with the thread extension
	Modify the parameter value in the database
	Detecting faults

	GUI panel
	The integrated GUI
	IGUI panel example
	RDB interface
	IS interface
	IGUI panel methods
	IguiPanel Interface
	Accessing and modifying the source code
	Compiling and testing the panel
	Testing the panel with IGUI

	Diagnostics Test
	The Diagnostics Verification System
	A Test
	Test Repository
	Accessing the source code
	Checking IS information
	Retrieving information from IS
	Build the test
	Test Repository Browsing (Modification)
	Run DVS
	Load and Test Configuration

	On-line Monitoring
	The On-line Monitoring system
	Event Sampler
	Monitoring Task
	Monitoring exercise
	Modifying the source files for event sampler
	Modifying the source files for monitoring task
	Building the event sampler
	Building the monitoring task
	Modifying the databases
	Testing the monitoring exercise

	Chapter 6
	Online Histogramming
	The Online Histogramming subsystem

	Illustration�6.1 Communication between Histogram Providers and User Histogram Task
	Histogram Provider
	User Histogramming Tasks

	Illustration�6.2 Diagram of the Online Histogramming subsystem
	OH Interfaces
	Online Histogramming Web Page
	OH examples
	Accessing the source code
	raw_provider

	Illustration�6.3 Create an OHRawProvider and publish histograms
	How to build the raw_provider
	root_display

	Illustration�6.4 Create an OHHistogramIterator object and retrieve all histogram
	How to build the root_display
	Testing the raw_provider and root_display

	Illustration�6.5 results of root_display usage
	Illustration�6.6 results of graphics mode root_disply usage

	Resource Manager
	The Resource Manager
	How does the Resource Manager work?
	Usage of the Resource Manager
	Adding Resources to the database
	Usage of the C++ library
	What does the application do?
	Accessing and modifying the source code
	Compiling and testing of the application
	Hardware Resources
	Introducing Hardware Resources in the Database
	Usage of Hardware Resources
	The rm_gui

